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Abstract. Matrix computation is an important topic in applied mathematics
and information science. There are various methods of �nding the inverse and
generalized inverse of a given matrix. However, for the product matrices, there
does not exist a general method of �nding its generalized inverse. In this note, we
introduce the concept of sandwich sets of matrices. By using the new concept of
sandwich sets, we are able to provide a method for �nding a generalized inverse
of product matrices.
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Generalized inverses of matrices and its applications have been investigated
by Rao and Mitra in [3]. For some special matrices, some authors have given
some interesting methods for �nding their generalized inverse matrices. For
example, Rakha [4] has recently given a method of �nding the Moor-Penrose
generalized inverse matrix. Furthermore, Werner [6] in 1994 also described the
problem for �nding a generalized inverse for the product of matrices. In fact he
considered the problem when will B−A− be a generalized inverse of AB? The
matrix computation for information systems was also discussed by J. Guan, Bell
and Z. Guan in [1]. In this aspect, a recursive method for �nding the inverse of
a CSP matrix was �rst provided by Ramabhadra and Sharma in [2]. However,
up to the present moment, except the paper by Werner [6], there does not exist
a general method of �nding a generalized inverse for the product of matrices. In
this note, we will �rst introduce the concept of sandwich sets of matrices. Then
by using the sandwich sets of matrices, we will provide an e�ective method for
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�nding a generalized inverse matrix for the product of matrices. Some examples
will be demonstrated how to �nd such a generalized inverse matrix for a product
of some particular matrices.

We �rst denote the set of all m × n matrices over a �eld F by Fn×m. Let
A ∈ Fm×n. If there exists some X ∈ Fn×m such that

AXA = A and XAX = X (1)

then we call this matrix X a re�exive generalized inverse of the matrix A,
denoted by A−.

For any A ∈ Fm×n, we can easily see that there exists A− ∈ Fn×m. Now,
we denote the rank of the matrix A by rankA = r. If r = 0, then A is an m×n
zero matrix, and so the n ×m zero matrix O is a re�exive generalized inverse
matrix. If r 6= 0, then there exists some invertible matrices P ∈ Fm×m and
Q ∈ Fn×n such that

A = P−1

[
Ir 0
0 0

]
Q−1, (2)

where P−1 is the usual inverse matrix of the matrix P . In this case, we can
verify that

A− = Q

[
Ir B1

B2 B2B1

]
P (3)

for any B1 ∈ Fr×(m−r) and B2 ∈ F (n−r)×r. From the matrix A− with the form
(3) above, we can see that for any no zero matrix A ∈ Fm×n, A− is unique if
and only if A is invertible (see [3]).

Now, we denote the set of all the re�exive generalized inverses A− of a matrix
A by V (A). Clearly, the set V (A) is non-empty for any matrix A. Let E, be
the set of all n× n idempotent matrices, that is,

E = {E : E2 = E, E ∈ Fn×n}.

Then, we can easily see that for any A ∈ Fm×n, AA− and A−A are both
idempotent matrices.

In order to obtain a re�exive generalized inverse for product matrices, we
now introduce the following de�nition.

Definition 1 Suppose that E, F ∈ Fn×n ∩E. Then we call

S(E, F ) = {G ∈ E : GE = FG = G and EGF = EF}

the sandwich set of the matrices E and F .

The sandwich sets have the following properties.

Proposition 2

(i) S(E, F ) de�ned above is non-empty.
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(ii) |S(E, F )| = 1 if and only if GH = HG for any G,H ∈ S(E,F ).

(iii) For any E ∈ E, S(E,E) contains a unique idempotent matrix E, i.e.
S(E,E) = {E}.

(iv) Suppose that I is the usual identity matrix. Then S(I, I) contains a unique
identity matrix I.

Proof. (i) It is clear that for any idempotent matrices E,F ∈ Fn×n, its product
EF is also an n× n matrix. Let P ∈ V (EF ), G = FPE. Then, we have

G2 = FPE · FPE = F (PEFP )E = FPE = G

so that G is an idempotent matrix. Also, by de�nition and formula (1), we can
see that

GE = FPE · E = FPE = G

FG = F · FPE = FPE = G

and
EGF = E(FPE)F = (EF )P (EF ) = EF.

This shows that G ∈ S(E, F ) and hence the proof is completed. ¤
(ii) The necessity is immediate since every matrix G in S(E, F ) is an idem-

potent matrix. We now prove the su�ciency. Suppose that G,H ∈ S(E,F ).
Then, by de�nition of the sandwich set, it is evident that G, H ∈ E such that

GE = FG = G and EHF = EF.

This leads to

GHG = (GE)H(FG) = G(EHF )G = GEFG = G2 = G.

By a similar argument, we can also deduce that HGH = H. Thus, by our
hypothesis, it follows that

G = GHG = G2H = GH = GH2 = HGH = H.

This shows that |S(E, F )| = 1.
(iii) Suppose that G ∈ S(E,E). Then, by de�nition of the sandwich set, we

have E ·G · E = E2 = E and EG = GE = G. Hence, E = (EG)E = GE = G.
(iv) Part (iv) follows immediately from (iii).
We are now ready to provide a method of �nding a re�exive generalized

inverse for the product of some particular matrices. We give the following
theorem.

Theorem 3 Suppose that A ∈ Fm×n and B ∈ Fn×p such that A− ∈ V (A) and
B− ∈ V (B). Then B−GA− ∈ V (AB) for any G ∈ S(A−A,BB−).
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Proof. It is easy to see that A−A and BB− are both n×n idempotent matrices.
Now, we write A−A = E and BB− = F . Then by using the de�nition of
sandwich set of the matrices E and F , for any G ∈ S(E,F ), we have

(AB)(B−GA−)(AB) = A(BB−)G(A−A)B
= AFGEB = AGB

= AA−AGBB−B = A(EGF )B

= AEFB = AA−ABB−B = AB.

On the other hand, we also have
(B−GA−)(AB)(B−GA−) = B−GEFGA− = B−G2A−

= B−GA−.

Hence, by the de�nition of the re�exive generalized inverses matrix, we can see
immediately that B−GA− ∈ V (AB).

The following corollaries are consequences of Theorem 3 and Propositi-
on 2 (ii).

Corollary 4 Suppose that A ∈ Fm×n and B ∈ Fn×p. If A− ∈ V (A) and
B− ∈ V (B) such that A−A = BB− = E ∈ E, then B−A− ∈ V (AB).

Corollary 5 Suppose that A ∈ Fm×n and B ∈ Fn×p. If A− ∈ V (A) and
B− ∈ V (B) such that A−A = BB− = I, then B−A− is a re�exive generalized
inverse matrix for the product AB of the matrices A and B.

Corollary 6
(i) If A is an n× n invertible matrix with the inverse A−1 and B is an n× p

matrix, then for any B− ∈ V (B), the product B−A−1 ∈ V (AB).
(ii) If A is an m×n matrix and B is an n×n invertible matrix with the inverse

matrix B−1, then for any A− ∈ V (A), the product B−1A− ∈ V (AB).

Proof. We only need to prove part (i) because the proof of part (ii) is similar.
By our hypothesis, we see that an n × n matrix A is invertible and so A−1A
is clearly the identity matrix I. Hence, we only need to consider the sandwich
set S(I,BB−), for any B− ∈ V (B). In this cases, it can be veri�ed that the
idempotent matrix BB− is in S(I,BB−). Consequence, by Theorem 3, we
immediately see that B−A−1 ∈ V (AB). Thus, the proof is completed. ¤

Corollary 7 Suppose that A ∈ Fm×1 and B ∈ F1×p. Then for any A− ∈
V (A) and B− ∈ V (B), the product matrix B−A− is a re�exive generalize in-
verse matrix for the product AB of the matrices A and B.

Proof. The conclusion is obvious because the sandwich set S(A−A,BB−) con-
tains a unique element 1. ¤

We now give some examples below to demonstrate how to apply our theorem
to �nd the generalized inverse matrix for some product of particular matrices.
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Example 8 Let A = (a1, a2, . . . , am)T and B = (b1, b2, . . . , bp), where a1, b1 6=
0. We now �nd a re�exive generalized inverse matrix for AB. According to our
formula (3), we can easily see that

A− =
(

1
a1

+ CA1, c1, c2, . . . , cm−1

)
,

where

A1 =
(
−a2

a1
, . . . , −am

a1

)T

C = (c1, c2, . . . , cm−1),

which is an arbitrary 1× (m− 1) matrix.
Similarly, we have

B− =
(

1
b1

+ B1D , d1 . . . , dp−1

)T

,

where
B1 =

(
−b2

b1
, . . . , −bp

b1

)

and
D = (d1 , . . . , dp−1)

T

which is an arbitrary (p− 1)× 1 matrix.
By using our Corollary 4, we have

(AB)− = B−A− =




1
b1

+ B1D

d1

...
dp−1




(
1
a1

+ CA1, c1, c2, . . . , cm−1

)
.

In particular, if we take

A− =
(

1
a1

, 0, 0, . . . , 0
)

and

B− =
(

1
b1

, 0, . . . , 0
)T

,

then we immediately obtain a generalized inverse of AB as follows

(AB)− =




1
a1b1

0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 0 0




.



196 X. M. REN, Y. WANG AND K. P. SHUM

Example 9 Suppose that

A =
(

1 −2 1 1
2 −3 1 3

)T

and
B =

(
1 −2 3 −1 2
−1 1 −2 1 −1

)
.

In order to �nd a re�exive generalized inverse matrix for the product of matrices
AB, we �rst �nd the set V (A) by using our formula (3). In fact, we can easily
verify that

V (A) =
{( −3 + a− 3b −2 + a− b a b

2 + c− 3d 1 + c− 3d c d

) ∣∣∣∣ a, b, c, d ∈ F
}

and
V (B) =

{
B− |B− =

(
B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

)}
,

where
B11 = −1 + e− g + f − h B21 = −2 + 2e− 2g + f − h

B12 = −1− e− f − i− j B22 = −3− 2e− f − 2i− j

B13 = −e− f B23 = −2e− f

B14 = −g − h B24 = −2g − h

B15 = −j − i B25 = −2i− j

for e, f, g, h, i, j ∈ F .
Now, we can �nd a re�exive generalized inverse matrix for the product of

the matrices A and B, that is, the matrix AB. If we choose

A− =
(

1 0 1 −1
0 1 1 1

)
and B− =




−1 1
0 0
1 0
1 3
0 1




then we have

A−A =
(

1 0
0 1

)
and BB− =

(
1 0
0 1

)
.

By Corollary 5, we immediately obtain that

(AB)− = B−A− =




−1 1
0 0
1 0
1 3
0 1




(
1 0 1 −1
0 1 1 1

)
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=




−1 1 0 2
0 0 0 0
1 0 1 −1
1 3 4 2
0 1 1 1




.
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