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Abstract. Tilings of the plane by translation show interesting regularity in the
disposition of the tiles: in particular, we point out that in the case of a single
tile, the obtained con�gurations are invariant by one translation. Furthermore,
in the case of rectangular tiles, such a translation is the horizontal or the ver-
tical one. Then we restrict our analysis on invariant matrices and we furnish a
characterization result which links together invariance and homogeneity.
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1 Introduction
The present paper relies on the basic fact that every tiling of the plane by
translations of a given m×n rectangle is invariant by a single translation (either
the horizontal translation of length m or the vertical translation of length n or
both, in the particular case of a regular tiling).

This result integrates the studies pursued in [3] on the connections between
k-homogeneous mappings in Z2 and the tilings of the plane with rectangles by
translation.

In particular, if we mark the same point in each rectangular tile used in the
planar tiling, then the obtained con�guration of marked points has the property
that if we look at it through a rectangular window of the same dimensions of
the tile, there appears one and only one marked point in each position of the
window. Figure 1 (a) shows a tiling of the plane with 4× 3 rectangles which is
invariant with respect to the vertical translation. Each tile has the upper-left
element marked with 1. In Fig. 1 (b) the distribution of the 1's in the tiling is
the same as the previous one, and some rectangular 4 × 3 windows are shown;
a quick check reveals the presence of exactly one element 1 inside each of them.

This last fact is not characteristic of rectangles but is valid for any kind of
pieces P one can use to tile the plane by translation. Therefore the following
theorem holds:
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Figure 1: A tiling of Z2 with rectangles by translation, (a). Some positions of a
4× 3 window moving around the obtained con�guration of 1's in Z2, (b).

Theorem 1 Let U be a mapping of Z2 into {0, 1} and P be a mapping of a
�nite subset F of Z2 into {0, 1} such that |{f ∈ F : P (f) = 1}| = 1. The
following are equivalent:

(1) ∀ z ∈ Z2, |{f ∈ F : U (z + f) = 1}| = 1;

(2) Z2 = U−1(1)⊕ F .

This symbol ⊕ denotes the unambiguous Minkowski sum, i.e. C = A⊕B if
and only if:

- ∀ c ∈ C ∃a ∈ A, ∃b ∈ B such that c = a + b;

- ∀ a1, a2 ∈ A, ∀ b1, b2 ∈ B, it is a1 + b1 = a2 + b2 ⇒ a1 = a2 and b1 = b2.

Property (1) says that U contains one and exactly one 1 in each position of
the window F , and property (2) says that Z2 is tiled by the translation of F
(even more precisely that if we surround each 1 in U by a copy of F such that
the 1 is always in the same position in F we obtain a tiling of Z2). This leads
to the de�nition of homogeneous bidimensional sequence given in [3]:

a mapping U : Z2 → {0, 1} is homogeneous bidimensional sequence of degree
k with respect to a �nite window F if and only if

∀z ∈ Z2, |{f ∈ F : U(z + f) = 1}| = k.

In [3] it is proved the following rather surprising result:
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Theorem 2 A bidimensional sequence U : Z2 → {0, 1} is homogeneous of de-
gree k with respect to a rectangle R if and only of there exist k disjoint homoge-
neous sequences of degree 1 (with respect to the same R) such that:

U = U1 + U2 + . . . + Uk.

This last can be nicely rephrased:
If a bidimensional sequence is homogeneous of degree k with respect to F ,

then one can color the 1′s with k colors in such a way that in each position of
the window there is one and only one 1 of each color, as shown in Fig. 2.

Example 1 A bidimensional sequence U which is 4-homogeneous with respect
to a 4×3 window is represented in Fig. 2, (a) (from now on, we omit the symbols
0). The symbols 1 which belong to each of the four 1 homogeneous sequences
U1, U2, U3, and U4 into which U decomposes, are labelled with a, b, c, and d,
respectively (see Fig. 2, (b)).

1

(b)(a)

ddd

dd

cc

ccc

b

b

b

b

b

b

aa

aaa

a aa

11

11 11

1111

1 1 1

11 1

1

1 11

1

11

Figure 2: The invariance correspondence in a (0, 1) homogeneous matrix.

We claim that the three symbols a, c, and d are invariant by the translation
(4, 0) and the fourth one, corresponding to b, is invariant by the translation
(0, 3).

We conjecture that Theorem 2 is valid for all exact windows i.e., those win-
dows which can be used to tile the plane by translation. In fact it can be shown
that there exists a sequence U which is homogeneous of degree 1 with respect
to an window F if and only if F is exact (by Theorem 1), and thus Theorem
2 can hold only for exact windows. For the time being we are unable to furnish
a proof in this more general case.

In the next section we focus our attention on homogeneous matrices with
integer coe�cients, and we prove an analogous of Theorem 2. Section 3 deals
with R-null matrices, and it contains the following main result: each R-null
matrix is decomposable as sum of 1 or −1 homogeneous matrices which are
invariant by the horizontal or the vertical translation.

The generalization to bidimensional sequences (i.e. in�nite matrices) of the
results obtained in the next two sections is straightforward.
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2 A decomposition theorem for homogeneous
matrices with integer coe�cients

From now on, we will start dealing with matrices rather than sequences. We
de�ne a matrix M of size p×q as a bidimensional sequence of restricted domain,
i.e. a mapping of {0, 1, . . . , p − 1} × {0, 1, . . . , q − 1} into a set of coe�cients
which will be either {0, 1} or {−1, 0, 1} or N or Z (note that such a de�nition of
matrix allows an indexing of its elements which is di�erent from the standard
one).

We set [p] = {0, 1, . . . , p − 1}. Also we slightly modify the de�nition of
homogeneity: Let R be the rectangle [m]× [n]; the matrix M : [p]× [q] → Z is
homogeneous of degree k with respect to R if and only if ∀(x, y) ∈ [p−m + 1]×
[q − n + 1] it holds

∑
{M(x + i, y + j) : (i, j) ∈ [m]× [n]} = k.

Notice that, if the set of coe�cients is {0, 1}, this de�nition coincides with the
previous one.

We call R − projection of a matrix M with coe�cients in Z, the matrix
R(M) of size (p−m + 1)× (q − n + 1) whose coe�cients are

R(M)(x, y) =
∑

{M(x + i, y + j) : (i, j) ∈ [m]× [n]}.

A matrix is homogeneous with respect to R if and only if its R-projection is
constant. Furthermore, a matrix is called R−null if and only if its R−projection
is the matrix having all the coe�cients equal to 0.

Theorem 3 A matrix M with coe�cients in N (the set of non negative integers)
is homogeneous of degree k with respect to R if and only if it is the sum of k
matrices M1,M2, . . . , Mk with coe�cients in {0, 1} which are homogeneous of
degree 1.

The proof is very similar to that of Theorem 2 given in [3], but it is slightly
more di�cult.

Let M and M ′ be two matrices of the same size p× q with coe�cients in N.
We say that M ′ is smaller than M if and only if

∀(x, y) ∈ [p]× [q] it holds M ′(x, y) ≤ M(x, y).

In order to prove Theorem 3, we show that if M is homogeneous of degree k
with respect to R there exists a matrix M ′ with coe�cients in {0, 1} which is
homogeneous of degree 1 with respect to R, and it is smaller than M . Then we
proceed in subtracting M ′ from M to obtain a new matrix whose coe�cients are
in N, and which is homogeneous of degree k−1. Clearly we can repeat this pro-
cess and eventually write M as a sum of (0, 1)-matrices which are homogeneous
of degree 1. Now we need a crucial lemma:



ON A TOMOGRAPHIC EQUIVALENCE BETWEEN (0, 1) MATRICES 255

Lemma 1 If M is a matrix with coe�cients in Z, and it is homogeneous with
respect to R, then for all (x, y) ∈ [p]× [q] such that (x + m, y + n) ∈ [p]× [q], it
is

M(x, y) + M(x + m, y + n) = M(x + m, y) + M(x, y + n).

Proof. Set the values s =
∑{M(x + i, y) : 1 ≤ i ≤ m − 1} and s′ =

∑{M(x +
i, y + n) : 1 ≤ i ≤ m− 1}.

We clearly have M(x, y) + s = M(x, y + n) + s′ and s + M(x + m, y) =
s′ + M(x + m, y + n).

Consequently we get

s− s′ = M(x, y + n)−M(x, y) = M(x + m, y + n)−M(x + m, y). ¤

The following picture helps to visualize this property:

a

(x+m,y)

(x+m,y+n)(x,y+n)

(x,y)

s’

s d
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We just express the fact that the sum of the coe�cients in the rectangle
whose left inferior corner is (x, y) is equal to the sum of the coe�cients in the
rectangle whose left superior corner is (x, y + n). The same equality holds for
the sums of the coe�cients in the two rectangles whose right inferior corner is
(x + m, y) and whose right superior corner is (x + m, y + n).

Lemma 1 can be extended to get:

Lemma 2 If M is a matrix with coe�cients in Z, and it is homogeneous with
respect to R, then for all (x, y) ∈ [p] × [q] and for all α, β ∈ Z, whenever
(x + αm, y + βn) belongs to [p]× [q], it is

M(x, y) + M(x + αm, y + βn) = M(x, y + βn) + M(x + αm, y).

The proof follows immediately by symmetry and induction.
Proof. (of Theorem 3)

First we assume that M is invariant by the translation (m, 0), and α, β ∈ Z.
By de�nition, for all (x, y) ∈ [p] × [q], if x + αm ∈ [p], then M(x + αm, y) =
M(x, y). Then one can �nd a (0, 1)-matrix which is homogeneous of degree 1 with
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respect to R and smaller than M as follows: take any non zero element M(x, y),
with (x, y) ∈ [m]× [n], and consider all the values of β such that y + βn ∈ [q].
For each of them, there exists a strictly positive coe�cient M(xβ , y + βn) with
xβ ∈ x + [m]. This is obvious since

∑
{M(xβ , y + βn) : xβ ∈ x + [m]} =

∑
{M(x0, y) : x0 ∈ x + [m]}

and
∑{M(x0, y) : x0 ∈ x + [m]} ≥ M(x, y) > 0.
Now all the coe�cients M(xβ + αm, y + βn), with α, β such that(xβ +

αm, y +βn) ∈ [p]× [q], are strictly positive, and the (0, 1)-matrix M ′ having all
the elements equal to 0 except for those of the form M ′(xβ +αm, y +βn) which
are equal to 1, is smaller than M , and can be subtracted from it. The matrix
M −M ′ is homogeneous of degree k− 1 and is also invariant by the translation
(m, 0), thus a homogeneous matrix with coe�cients in M which is invariant by
(m, 0) is the sum of (0, 1)-matrices which are homogeneous of degree 1 and are
also invariant by (m, 0).

Now assume that M is not invariant by the translation (m, 0), i.e. there
exists (x, y) ∈ [p]× [q] such that M(x, y) and M(x + m, y) are di�erent, and let
M(x, y) > M(x + m, y) (if M(x, y) < M(x + m, y), the argument is exactly the
same).

As a consequence of Lemma 2, for all β such that y + βn ∈ [q], it holds that
M(x, y + βn) is strictly positive.

Indeed M(x, y + βn) + M(x + m, y) = M(x, y) + M(x + m, y + βn) implies
that M(x, y + βn) − M(x + m, y + βn) = M(x, y) − M(x + m, y) is strictly
positive.

Consider now any column x+αm, with x+αm ∈ [p], and compare the sums
of n consecutive coe�cients in the columns x and x+αm, starting from the row
y, i.e.

∑
{M(x, y + j) : j ∈ [n]} and

∑
{M(x + αm, y + j) : j ∈ [n]}.

Since the matrix M is homogeneous, then the two sums are equal. Thus two
cases are possible

a. for all j ∈ [n], we have M(x+αm, y−h+j) = M(x, y−h+j). This implies,
by Lemma 2, that M(x + αm, j) = M(x, j) for all j ∈ [q].
So, if we set yα = y, then it surely holds that M(x + αm, yα + βn) is
strictly positive for all β such that yα + βn ∈ [q].

b. There exists an index j such that M(x + αm, y + j) > M(x, y + j). Then if
we set yα = y + j, the above argument assure that M(x + αm, yα + βn)
is strictly positive for all β such that yα + βn ∈ [q].

Now the matrix M ′ whose coe�cients are all 0's except for those of the
form M ′(x + αm, yα + βn) which are equal to 1, is a (0, 1)-matrix which is
homogeneous of degree 1, invariant by the translation (0, n) and smaller than
M , so the proof is complete. ¤
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Example 2 Consider the following matrix M which is homogeneous of degree
5 with respect to a rectangular 3× 3 window:
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We show how to decompose it into �ve matrices of degree 1: �rst we choose
a non zero element (the shadowed one in position (0, 7)), and we check that it
can only belong to a homogeneous matrix M ′ of degree 1 which is invariant by
the horizontal translation (3, 0). We �nd one (the choice is between 2) and we
subtract it from M to obtain the matrix (a) of Fig. 3, which is homogeneous of
degree 4.
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Figure 3: The �rst two steps of the decomposition of the matrix M in Example 2.

Then we choose a second element of M − M ′ (that shadowed in position
(4, 3) of Fig. 3 (a)), and we compute a second matrix M ′′ which is homogeneous
of degree 1, invariant by the vertical translation (0, 3), and to which the chosen
element belongs. We subtract it from the matrix (a) of Fig. 3, and we obtain
the matrix in Fig. 3, (b) which is homogeneous of degree 3.

Repeating the same computations with two more elements of the matrix (b)
in Fig. 3 leads to the full decomposition of M .

Theorem 3 can be easily generalized to homogeneous matrices with integer
coe�cient as follows:
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Theorem 4 A matrix with coe�cients in Z is homogeneous of degree k with
respect to a rectangle R if and only if it can be obtained as the di�erence between
two sums of (0, 1)-matrices which are homogeneous of degree 1 with respect to
R. Furthermore, the number of elements in each of these two sums are bounded
by:

k +
∑

{−M(x, y) : M(x, y) < 0, (x, y) ∈ [p]× [q]}
and

k +
∑

{−M(x, y) : M(x, y) > 0, (x, y) ∈ [p]× [q]}.

Proof. Let M be a homogeneous matrix with coe�cients in Z, and let us consider
a negative coe�cient M(x, y) = −a, a > 0, if any.

Take any (0, 1)-matrix M ′ of the same dimension of M , which is homoge-
neous of degree 1 and such that M ′(x, y) = 1. The sum M + aM ′ is a matrix
with coe�cients in Z which is homogeneous of degree k + a and which satis�es

(M + aM ′)(i, j) ≥ M(i, j) for all (i, j) ∈ [p]× [q].

By construction, M + aM ′ has at least one negative coe�cient less than M .
Summing to M opportune matrices until all its negative coe�cients disappear,
we succeed in writing M as the di�erence M1 −M2 where M1 and M2 are two
matrices having non negative coe�cients, and such that M1 is homogeneous of
degree k +

∑{−M(x, y) : M(x, y) < 0, (x, y) ∈ [p]× [q]}.
It may be more economical to have all the positive coe�cient disappear if

the sum of the positive coe�cients is less than the absolute value of the sum of
the negative coe�cients.

When M has been written as the di�erence M1 −M2, we obtain the thesis
by splitting M1 and M2 into sums of homogeneous (0, 1)-matrices of degree 1
by means of Theorem 3. ¤

3 A deeper analysis of R-null matrices
Clearly, if the two matrices M1 and M2 in the proof of Theorem 4 have the
same R-projections, then M = M1 −M2 is R-null. Studying R-null matrices is
a natural way to study the equivalence between matrices de�ned by the equality
of their R-projections. In fact we can interpret the problem of constructing a
(0, 1)-matrix with a given R-projection as a problem of discrete tomography: we
are given a family of local pieces of information on a set of pixels distributed in a
rectangle and the problem is to retrieve such information (see [2] for a complete
introduction to discrete tomography).

The �rst problem of discrete tomography appearing in the literature is the
problem of constructing a (0, 1)-matrix with given row sums and column sums,
which is formulated as follows: let r0, . . . , rq−1 and c0, . . . , cp−1 be two sequences
of non negative integers such that

∑
{ri : i ∈ [q]} =

∑
{cj : j ∈ [p]}.
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Can one �nd a (0, 1)-matrix of size p× q such that ∀j ∈ [q] we have
∑{M(i, j) :

i ∈ [p]} = rj and ∀i ∈ [p] we have
∑{M(i, j) : j ∈ [q]} = ci?

The rj
′s are called row sums, and the ci

′s are called columns sums (in
more recent literature the vectors 〈r0, . . . , rp−1〉 and 〈c0, . . . , cq−1〉 are called the
horizontal and the vertical projections, respectively). Solutions to this problem
were given by Ryser [4], and independently by Gale [1] in the late �fties.

Our aim here is the study of a more general version of the following equiv-
alence de�ned by Ryser: M is equivalent to M ′ if and only if M and M ′ have
the same horizontal and vertical projections.

Ryser de�ned an elementary transformation which acts on the elements of
a (0, 1)-matrix by performing a mutual exchange of two 1's in position (x, y),
(x+h, y+l) with two 0's in position (x+h, y) and (x, y+l), if such a con�guration
exists (see Fig. 4, (a)).
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1
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0

1

(a)

0

1

1

Figure 4: Two examples of Ryser transformations.

Clearly such a transformation keeps the two projections invariant. The nice
result of Ryser is that if M and M ′ are equivalent, then one can transform
M into M ′ by a sequence of elementary transformations. As an example, the
transformation in Fig. 4, (b), is obtained by performing a sequence of two Ryser
elementary transformations.

Introducing matrices with coe�cients in {−1, 0, 1} we can restate Ryser's
result as follows:

Theorem of Ryser: Every matrix M with coe�cients in {−1, 0, 1} whose
horizontal and vertical projections are the constant vector equal to 0 is a sum of
M1, . . . , Mk matrices such that, for each 1 ≤ i ≤ k, the matrix Mi is null but
for the four di�erent elements

Mi(x0, y0) = Mi(x1, y1) = 1 and Mi(x0, y1) = Mi(x1, y0) = −1.

We can prove a very similar theorem: let us say that a row of a matrix M
is m-null if and only if the sum of any m-consecutive coe�cients of that row is
0 (we note that a m-null row is invariant by the translation (m, 0)). We de�ne
n-null columns in the same way.
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Obviously, adding a m-null row or a n-null column to a given matrix M does
not change its R-projection. This fact leads to the nice result that whenever
two matrices M and M ′ have the same R-projections then we can pass from
one to the other by adding a certain number of m-null rows and n-null columns.
In a more formal way, we can state:

Theorem 5 The set of all matrices which are full of 0's but for a m-null row
or a n-null column is a generating subset of the vector space of R-null matrices.

Proof. In the decomposition of a R-null matrix as a sum of homogeneous (0, 1) or
(0,−1)-matrices of degree 1 or −1 it is clear that the number of (0, 1) matrices
will be the same as the number of (−1, 0) matrices. Thus we can write M =
H1 −H ′

1 + H2 −H ′
2 + · · ·+ Hk −H ′

k, where both Hi and H ′
i are (0, 1)-matrices

homogeneous of degree 1, with 1 ≤ i ≤ k. We prove that each di�erence
Mi = Hi −H ′

i is a sum of m-null rows and n-null columns.
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−1−1−1−1−1

−1 −1 −1 −1

Figure 5: An example of the set of m-null rows M0
i which have to be added to

Mi, in order to obtain the matrix M ′
i having in the �rst column both elements

1 and −1.
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First, we assume that both Hi and H ′
i are invariant by the horizontal transla-

tion (m, 0) (if they both are invariant by the vertical translation (0, n), a similar
argument holds), and also that each row of Mi does not contain both elements
1 and −1 (if so, all the rows of Mi are either full of 0's or contain both 1 and
−1, and consequently they are m-null). We add to Mi a set of m-null rows M0

i

in order to obtain a new R-null matrix M ′
i , where each row is either full of 0's

or starts with an element 1 or −1 (see Fig. 5 for an example).
Since each column of M ′

i is either full of 0's or it contains both 1 and −1, so
it is n-null, we obtain the thesis.

Now consider Mi = Hi − H ′
i where Hi is invariant by (m, 0) and H ′

i is
invariant by (0, n) (the choice of Hi invariant by (0, n) and H ′

i invariant by
(m, 0) is completely analogous). We rely on Fig. 6 for an example of this second
case; we point out that the two 0's which appear in Mi, come from two elements
1 and −1 occurring in the same position.
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11111

1 −1 −11 1 1 1−1 −1

−1 −1 −1

Figure 6: An example of two sets M0,m
i and M0,n

i of m-null rows and n-null
columns, respectively, which have to be added to Mi to obtain a m-null matrix.

We proceed by adding to Mi a set of m-null rows (the matrix M0,m
i in Fig. 6)

which move the �rst element 1, if any, of each row to the �rst position. The
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obtained matrix is clearly invariant by (0, n).
Now it su�ces to move all −1's of the columns of M ′

i in the rows containing
1's by adding n-null columns (the matrix M0,n

i in Fig. 6), and we �nally obtain
a matrix which has only m-null rows. ¤

Since the addition operation is commutative, and a matrix whose rows [resp.
columns] are all m-null [resp. n-null] is invariant by the translation (m, 0) [resp.
(0, n)] we can state:

Corollary 1 Every R-null matrix M is the sum of M1 and M2 where M1 is
m-null and M2 is n-null.

Remark 1 The set of m-null rows and n-null columns is not a basis of the
vector space of R-null matrices, since they are not linearly independent.

As an example, the following matrix can be obtained both as sum of 3-null
rows and as a sum of 3-null columns.

1 −1 1 1−1

−1 −1 −11 1

1 1 1−1 −1

−1 −1 −11 1

1 −1 1−11

4 An alternate proof of Theorem 5
Let us consider a R-null matrix M of size p × q, and let us compute a matrix
M0 of the same size, with m-null rows, and such that M + M0 has only 0's in
its leftmost column, as follows: for each i ∈ [q],

- if M(0, i) = ai is di�erent from 0, then the row i of M0 is

−ai 0 . . . ai 0 . . . − ai 0 . . . ai 0 . . . ,

where the −ai's appear in positions (βm, i), with β ∈ N, βm < p, and the
ai's in positions (βm + h, i) for some h between 1 and m− 1, βm +h < p.
Clearly such a row is m-null;

- if M(0, i) is equal to 0, then the row i of M0 is full of 0's.

The �rst column of M + M0 is full of 0's, and this implies that all the
columns in position βm of M + M0 are n-null columns. In fact, for all i ∈ [q],
(M + M0)(0, i) = 0 implies

∑
{(M + M0)(k, i + h) : h ∈ [n], 1 ≤ k ≤ m− 1} = 0
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and, since
∑{(M + M0)(k + 1, i + h) : h ∈ [n], k ∈ [m]} = 0, we have

∑
{(M + M0)(i + h,m) : h ∈ [n]} = 0.

So, the sum of n consecutive coe�cients in the column m is equal to 0, and
obviously this is also true for all the columns in position βm.

Let M0 be the matrix whose columns are full of 0's except for those in posi-
tion βm, where the elements are de�ned to be the opposite of the correspondent
ones in M+M0. Finally, the matrix M+M0+M0 has all the columns in position
βm full of 0's.

The process described up to now can be repeated for each column j, with
0 < j < m, in order to compute the matrices Mj and M j , having m-null rows
and n-null columns respectively, and such that M +Mj +M j has all the columns
in positions βm + j full of 0's, with βm + j < p.

Eventually we can write M as the sum of a matrix with m-null rows and a
matrix with n-null columns. ¤

Example 3 Let us consider the matrix M of Fig. 7 which is 4× 3-null.

+

=+

+

M 
0

0M M 

−322

1

4

−2 −3

−3

−3

−1

−1

3

−2

1

1

−2

−1

1

2

−1

1

5

−1

2

−3

−2

−2

−1

1

−2

34

4

2

−1

−1

−2

−4−4 4

−22

−11−1

−1

−2

−2 22−2

−1

2 −2

4

1

2

−4

−1

−2

−1

22

1 1

2

−2

4

1

1

2

−3 −3

2

−2

−1

−1

−2

−1

−1

1

3

−2

−2 3

−4

1

−4

3

1

3

−4

1

−3

2

1

−3

2

1

Figure 7: The �rst step in the decomposition of the matrix M into m-null rows
and n-null columns.

We show how to decompose it into matrices having 4-null rows and 3-null
columns: �rst we compute one of the matrices M0 whose sum with M produces
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a matrix having all 0's in its leftmost column. Then we compute the matrix
M0 which is full of 0's but for the elements in columns 4 and 8, which are the
opposite of the correspondent ones of M + M0, as depicted in Fig. 7.

We repeat this process for the columns 1 and 2 of M and we obtain four
matrices M1, M1, M2, and M2. Eventually we have

M = (−M0 −M1 −M2) + (−M0 −M1 −M2),

where the �rst sum has only 4-null rows, while the second has only 3-null
columns.

Remark 2 We can describe a basis of the vector space of m× n-null matrices.

We take all the matrices which have only one row which is not full of 0's and
this row is of the form

(1 0 . . . 1 0 . . . )(1 0 . . . 1 0 . . . ) . . .

with 1's in position βm and βm+h for some h between 1 and m−1, β ∈ N and
βm < p. There are (m− 1)q such matrices, m− 1 for each one of the q rows.

We take all the matrices which have only one column which is not full of 0's
and this column is of the form

( . . . )T (0 1 . . . 0 1)T (. . . 0 1 . . . 0 1)T

with 1's in positions αn and αn + k for some k between 1 and n− 1, α ∈ N and
αn < q. There are (n− 1)p such matrices, n− 1 for each one of the p columns.
The set of these matrices certainly generates the whole vector space.

But we can express the last m − 1 columns as a linear combination of the
other columns and of the rows, as shown in Fig. 8.

+

1−1 −1 1

1 −1 −11

1 −1−1 1

1 1

1 1

−1

−1

−1

−1

1 1−1

−1 −11

−1 11

1

1

1

−1

−1

−1−1

−1

1

1

1

=

Figure 8: The matrices having one m-null row and one n-null column are not a
linearly independent set.

The dimension of the vector space is then

(n− 1)p + (m− 1)q − (m− 1)(n− 1)

and this is compatible with the fact that if we know the elements in the (m−1)
�rst columns and the (n − 1) �rst rows of a m × n-null matrix, then we know
the whole matrix.
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