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Abstract
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1 Introduction
Let I(G) denote the number of independent sets of a graph G. This number can be deter-

mined for some special classes of graphs (see [8] for a survey). For instance, I(G) was studied for
grid graphs (see [1]), multipartite complete graphs, path-schemes (see [7]), and cyclic-schemes.
Some of these numbers are given by certain combinations of Fibonacci numbers, some others by
Lucas numbers.

In this paper, we study four classes of graphs. To de�ne these classes, we recall that a line
graph L(G) of a graph G is obtained by associating a vertex with each edge G and connecting
two vertices with an edge if and only if the corresponding edges of G are adjacent. Also, recall
that a cycle graph C` is a graph on ` nodes containing a single cycle through all nodes.

We now give the de�nitions of our classes.

Class 1 Let G1
` = C`, the `-cycle graph. We obtain G2

` by superimposing the line graph L(G1
`)

onto the graph G1
` , that is splitting each edge of G1

` with the corresponding vertex of
L(G1

`) and then adding the edges of L(G1
`). More generally, Gn

` is obtained by superim-
posing Ln−1(G1

`) onto Gn−1
` . For example, in Figure 1, we have the graphs G4

3 and G3
4,

respectively, if one ignores the dashed edges. Clearly, all but n of the `n nodes of Gn
` have

degree 4, and we say that Gn
` is an almost 4-regular graph.

Class 2 The graph Rn
` is obtained from Gn

` by duplicating the edges of G1
` . For example, in

Figure 1, the extra edges are the dashed edges, and by adding them we get the graphs R4
3

and R3
4 respectively. So, to get Rn

` we add ` additional edges to Gn
` , and it is easy to see

that Rn
` is a 4-regular graph.
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Figure 1: Examples of (almost) 4-regular graphs under consideration.

Class 3 Let K1
` = K`, a complete graph on ` nodes. Put the ` nodes of K1

` on a circle and draw
the remaining (` − 1)! − ` edges. Call the �rst ` edges external and the remaining edges,
internal. Then construction of Kn

` is similar to that of Gn
` , except that:

1. The basis of the construction is now K`, rather than C`.
2. On each iteration i, the graph superimposed onto Ri−1

` is not Li(K`) but rather the
complete graph on the nodes of Li(C`), the line graph of C` formed by the external
edges of K1

` .

In Figure 2, we show how to construct K3
4 from K2

4 (the dashed edges should be ignored).
In that �gure, the external edges of respective complete graphs are in bold. We also
remark that the internal edges do not intersect each other. Moreover, Figure 2 suggests
a convenient way of representing K3

4 , where each node of the graph lies only on internal
edges incident with that node. We achieve that by putting the nodes of the line graphs
under consideration o� the centers of the corresponding edges. Indeed, if we were using
the centers of the external edges, K3

4 would look as in Figure 3, which is misleading since,
for example, the node a does not lie on the edge bc.
The graph Kn

` is almost (` + 1)-regular, since all but ` of its `n nodes have degree ` + 1.
Moreover, it follows from our de�nitions that Kn

3 = Gn
3 .

Figure 2: A way of constructing K3
4 and P 3

4 .

Class 4 The graph Pn
` is obtained from the graph Kn

` by duplicating the external edges in the
graph K1

` . For example, in Figure 2, the extra edges are the dashed edges, and by adding
them we construct the graph P 3

4 from K3
4 . So to get Pn

` we add ` extra edges to Kn
` , and

it is easy to see that Pn
` is an (` + 1)-regular graph.
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Figure 3: A bad presentation of K3
4 .

Let g`(n), r`(n), k`(n) and p`(n) denote the numbers of independent sets in the graphs
Gn

` , Rn
` , Kn

` and Pn
` respectively. In our paper we study these numbers. In Section 3, we give

an algorithm for calculating all these numbers. For the numbers p`(n), we provide an explicit
generating function (see Theorem 3.4). However, in order to illustrate our approach to the
problem, in Section 2 we consider g3(n) and �nd an explicit formula for it.

Our choice of the graphs to study was motivated by the so called de Bruijn graphs, which
are de�ned as follows. A de Bruijn graph is a directed graph ~Gn = ~Gn(V,E), where the set of
vertices V is the set of all the words of length n in a �nite alphabet A, and there is an arc from
vi = (vi1, . . . , vin) to vj = (vj1, . . . , vjn) if

vi2 = vj1, vi3 = vj2, . . . , vin = vj(n−1),

that is when the words vi and vj overlap by (n− 1) letters.
The de Bruijn graphs were �rst introduced (for the alphabet A = {0, 1}) by de Bruijn in

1944 for enumerating the number of code cycles. However, these graphs proved to be a useful
tool for various problems related to the subject of combinatorics on words (e.g. see [2, 3, 5]).
It is known that the graph ~Gn can be de�ned recursively as ~Gn = L(~Gn−1). The authors were
interested in studying other graphs de�ned recursively using the operation of taking line graphs
(with natural bases), which could give interesting applications. Also, with our choice of graphs
(Gn

` and Kn
` ), it is natural to complete them to regular graphs (Rn

` and Pn
` ) and study these

graphs. It turns out that there are combinatorial interpretations (relations to other combinatorial
objects) for the number of independent sets for some of our graphs, and we mention these relations
in Sections 2 and 3. Moreover, we construct a direct bijection describing such a relation for Pn

4

(see Proposition 3.5 and the discussion that follows).

2 The numbers g3(n).
Let us �rst �nd an explicit formula for g3(n). It is clear that for any independent set of

the graph Gn
3 , we can label a node of Gn

3 1 if this node is in the independent set, and label it
0 otherwise. Thus, our purpose is to count the number of triangles having either 0 or 1 in each
node and such that no two adjacent nodes are both assigned 1s. We call such triangles legal.

In order to get a recursion for g3(n), we introduce three auxiliary parameters an, bn, and
cn, which are the numbers of legal triangles that, up to rotation, have speci�c numbers in the
nodes of the biggest triangle (see Figure 5). Since we consider only legal graphs, the 1s in the
nodes of the biggest triangle induces 0s in certain nodes of a smaller triangle (this 0s are shown
in Figure 5).

Considering all the possibilities for the numbers of the biggest triangle, we have that

g3(n) = g3(n− 1) + 3an + 3bn + cn,
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Figure 4: Auxiliary parameters an, bn, and cn.

where g3(n − 1) corresponds to all 0s, and we have the multiple 3 twice because of possible
rotations. Similarly, we get that an = g3(n− 2) + an−1, and bn = cn = g3(n− 2). This leads to
the recursion

g3(n) = 2g3(n− 1) + 6g3(n− 2)− 4g3(n− 3), (1)
which, under the same initial conditions, is equivalent to the recursion

g3(n) = 4g3(n− 1)− 2g3(n− 2). (2)

We de�ne g3(0) = 1, since we associate the graph G0
3 with the empty graph, in which case there

is only one independent set, the empty set. Thus,

g3(n) =
1

2
√

2

(
(2 +

√
2)n+1 − (2−

√
2)n+1

)
,

and the generating function for the numbers g3(n) is 1/(1− 4x + 2x2). The initial values for the
numbers g3(n) are:

1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, . . . .

Preceded by 0, the sequence {g3(n)} is the binomial transform of the Pell numbers

Pn =
(1 +

√
2)n − (1−√2)n

2
√

2

(see [11, A007070]). These numbers can also be interpreted as maximum bets in a poker game
(also see [11, A007070]), where the �rst player bets 1 dollar into a pot and the ith player bets
the amount of the (i − 1)st player's bet plus the resulting amount of money in the pot. Then
the number of dollars dn in the pot after n bets is given by

dn = 2(dn−1 + (dn−1 − dn−2)) = 4dn−1 − 2dn−2, d0 = 1, d1 = 4,

which yields dn = g3(n).
We remark that it would be interesting to obtain recurrence (2) directly from the graph Gn

3 ,
rather than via recurrence (1). Unfortunately, we were unable to do this.

3 An algorithm for calculating g`(n), r`(n), k`(n) and p`(n)

In this section we present an algorithm for calculating g`(n), r`(n), k`(n) and p`(n) by using
the transfer matrix method (see [10, Theorem 4.7.2]).
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3.1 An algorithm for calculating g`(n)

In this section, we use the transfer matrix method to obtain an information about the
sequence of g`(n).

Similarly to Section 2, for any independent set of the graph Gn
` , consider a labeling of Gn

` ,
where the nodes of the independent set are labeled 1 and the remaining nodes are labeled 0. For
a given graph Gn

` , we de�ne the n-th level of Gn
` to be Gn

` \ Gn−1
` , which is isomorphic to G1

` .
Thus, we may think of an independent set of the graph Gn

` as assembled from elements chosen
on each level, making sure that when we add a new level, we create no con�ict with the previous
level.

The collection L` of possible level labelings is the set of all (0, 1) `-vectors v = (v1, . . . , v`).
It will be convenient to de�ne v`+1 := v1. Then v = (v1, . . . , v`) and w = (w1, . . . , w`) in L` are
a possible consecutive pair of levels in an independent set of Gn

` (with w following v) if and only
if

vi = vi+1 = 0 or wi = 0, where i = 1, 2, . . . , `. (3)
Thus, to obtain any independent set in the graph Gn

` , we begin with a vector of L`, then keep
adjoining each next vector w ∈ L` so that it satis�es (3) together with the previously chosen
vector v ∈ L`, until n vectors have been selected.

We de�ne a matrix G = G`, the transfer matrix of the problem, as follows. G is a 2` × 2`

matrix of 0s and 1s whose rows and columns are indexed by vectors of L`. The entry of G
in position (v,w) is 1 if the ordered pair of vectors (v,w) satis�es (3), and is 0 otherwise. G
depends only on `, not on n. Hence, the number of independent sets of Gn

` , g`(n), is the �rst
entry of the vector Gn · (u1, . . . , u2`)T , where ui = 1 if the ith vector v in the collection L` has
no two consecutive 1s, even after wrapping, (i.e. vi + vi+1 ≤ 1 for all i = 1, 2, . . . , `), and ui = 0
otherwise. Hence,

g`(n) = (1, 0, . . . , 0) ·Gn · (u1, . . . , u2`)T .

For instance, when ` = 3, the possible level vectors are
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1),

except for the last level, where we only have
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0).

If we index the rows and the columns of the transfer matrix G in this order, then we get

G =




1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0




.

The vector (u1, . . . , u2`)T in this case is (1, 1, 1, 0, 1, 0, 0, 0). If we now �nd the �rst entry
of the vector (I − xG)−1 · (1, 1, 1, 0, 1, 0, 0, 0)T , where I is the unit matrix, then we get that the
generating function for g3(n) is given by 1/(1 − 4x + 2x2). We obtain the results for larger `
similarly.
Theorem 3.1. The generating functions for the numbers g4(n), g5(n) and g6(n) are given,
respectively, by

1 + 4x− x2 − 2x3

1− 3x− 14x2 + 15x3 + 7x4
,

(1 + x)(1 + 5x− 8x2)
1− 5x− 30x2 + 69x3 + 31x4 − 22x5

,

1 + 10x− 12x2 − 50x3 + 10x4 + 20x5 − 12x6

1− 8x− 66x2 + 280x3 + 178x4 − 532x5 − 84x6 + 108x7
.
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We remark that the algorithm for �nding the generating function for g`(n) has been imple-
mented in Maple, and yielded explicit results for ` ≤ 6.

3.2 An algorithm for calculating r`(n)

In this section we use the transfer matrix method to obtain an information about the numbers
r`(n). This case is similar to that of g`(n) with some small di�erences.

We partition Rn
` into levels just as in the case of Gn

` , so the n-th level of Rn
` is Rn

` \Rn−1
` .

The collection of possible levels L` is the set of all `-vectors v of 0s and 1s such that there
no consecutive 1s in v, that is, vi + vi+1 6= 2 (where we de�ne v`+1 := v1). Clearly, the set L`

contains exactly L` vectors where L` is the `th Lucas number. For instance, L3 contains the
vectors (0, 0, 0), (0, 0, 1), (0, 1, 0), and (1, 0, 0).

The condition that vectors v and w in L` are a possible consecutive pair of levels in an
independent set of Rn

` is given by (3) just as for Gn
` . To obtain any independent set in the

graph Rn
` , we begin with a vector of L`, then keep adjoining each next vector w ∈ L` so that it

satis�es (3) together with the previously chosen vector v ∈ L`, until n vectors have been selected.
We de�ne the transfer matrix of the problem R = R` in the same way as G = G` in

subsection 3.1. Then R is an L` × L` matrix, and the number of independent sets of Rn
` , r`(n),

is the �rst entry of of the vector Rn · 1 where 1 = (1, 1, . . . , 1). Hence,

r`(n) = (1, 0, . . . , 0) ·Rn · 1.

For instance, when ` = 3, the possible level vectors in an independent set are

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0).

If we indexed the rows and columns in this order, then the transfer matrix is

R =




1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0


 .

If we �nd the �rst entry of the vector (I − xG)−1 · 1, we get that the generating function for
r3(n) is given by 1+2x

1−2x−2x2 . The initial values for the numbers r3(n) are

1, 4, 10, 28, 76, 208, 568, 1552, 4240, . . .

This sequence appears as A026150 in [11].
Similarly to the case ` = 3, we obtain the following results for ` = 4, 5, 6.

Theorem 3.2. The generating functions for the numbers r4(n), r5(n) and r6(n) are given,
respectively, by

1 + 4x− 4x2

1− 3x− 4x2 + 4x3
,

1 + 7x− 6x2

1− 4x− 8x2 + 6x3
,

1 + 12x− 24x2 + 8x4

(1− 8x + 4x2 + 4x3)(1 + 2x− 2x2)
.

We remark that the algorithm for �nding the generating function for r`(n) has been imple-
mented in Maple, and yielded explicit results for ` ≤ 6.
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3.3 An algorithm for calculating k`(n)

In this section we use the transfer matrix method yet again to obtain information about the
sequences k`(n). This case is also similar to that of g`(n), so we will only sketch it brie�y.

We partition Kn
` into levels just as in the case of Gn

` , so the n-th level of Kn
` is Kn

` \Kn−1
` .

The collection of possible levels L` is the set of all `-vectors v of 0s and 1s. Vectors v and w in
L` are a possible consecutive pair of levels in an independent set of Kn

` if they satisfy (3).
We de�ne the transfer matrix of the problem, K = K`, in the same way as G`. Then K

is a 2` × 2` matrix, and the number of independent sets of Kn
` , k`(n), is the �rst entry of the

vector Kn · (u1, . . . , u2`)T where ui = 1 if the ith vector in the collection L` contains at most
one nonzero entry. Hence,

k`(n) = (1, 0, . . . , 0) ·Kn · (u1, . . . , u2`)T .

For instance, when ` = 3, the possible level vectors in an independent set are

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

If we index the rows and columns in this order, then the transfer matrix is

K =




1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0




.

If we �nd the �rst entry of the vector (I−xK)−1 · (u1, . . . , u2`)T , we get that the generating
function for k3(n) is given by 1

1−4x+2x2 . In particular, we get that k3(n) = g3(n) which can also
be seen directly from the de�nitions. Similarly, we have the following result.

Theorem 3.3. The generating functions for the numbers k4(n), k5(n) and k6(n) are given,
respectively, by

1 + 2x + 3x2

1− 3x− 14x2 + 15x3 + 7x4
,

1 + x + 12x2 − 8x3

1− 5x− 30x2 + 69x3 + 31x4 − 22x5
,

1− x + 38x2 − 72x3 − 8x4 + 30x5

1− 8x− 66x2 + 280x3 + 178x4 − 532x5 − 84x6 + 108x7
.

We remark that the algorithm for �nding the generating function for k`(n) has been imple-
mented in Maple, and yielded explicit results for ` ≤ 6.

3.4 An algorithm for calculating p`(n)

In this section we use the transfer matrix method to obtain information about the sequences
p`(n).

We partition Pn
` into levels the same way as Gn

` , so the n-th level of Pn
` is Pn

` \Pn−1
` . The

collection of possible levels L` is the set of all `-vectors v of 0s and 1s. Vectors v and w in L`

are a possible consecutive pair of levels in an independent set of Pn
` if they satisfy (3).

The collection of possible levels L` is the set of all `-vectors v = (v1, . . . , v`) of 0s and 1s
such that v1 + · · ·+ v` ≤ 1. Clearly, the set L` contains exactly `+1 vectors which are (0, . . . , 0)
and (0, . . . , 0, 1, 0, . . . , 0). The condition that vectors v and w in L` are a possible consecutive
pair of levels in an independent set of Pn

` is given by (3).
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We de�ne the transfer matrix of the problem, P = P`, in the same way as G`, R` and K`.
We de�ne a matrix P = P`, the transfer matrix of the problem, as follows. P is an (`+1)×(`+1)
matrix of 0s and 1s whose rows and columns are indexed by vectors of L`. Therefore, it is easy
to see that

P =




1 1 1 1 1 · · · 1 1 1
1 0 0 1 1 · · · 1 1 1
1 1 0 0 1 · · · 1 1 1
...

...
...

1 1 1 1 1 · · · 1 0 0
1 0 1 1 1 · · · 1 1 0




(`+1)×(`+1)

.

Theorem 3.4. The generating function for p`(n) is given by
∑

n≥0

p`(n)xn =
1 + 2x

1− (`− 1)x− 2x2
.

Proof: We want to �nd the �rst entry of the vector (I−xP )−1 ·1 which means we must �nd
the �rst row, say (e1, . . . , e`+1), of the matrix (I − xP )−1. By solving the system of equations

(I − xP )−1 · (e1, . . . , e`+1)T = (1, 0, . . . , 0)T ,

we get that
e1 =

1− (`− 2)x
1− (`− 1)x− 2x2

and ej =
x

1− (`− 1)x− 2x2
for j ≥ 2.

Hence, the �rst entry of the vector (I − xP )−1 · 1 is given by

`+1∑

i=1

ei =
1 + 2x

1− (`− 1)x− 2x2
.



For instance, when ` = 3, the generating function for p3(n) is given by 1+2x
1−2x−2x2 . One can

see, in particular, that p3(n) = r3(n), which follows directly from the de�nitions.
In the case ` = 4 the initial values of the numbers p4(n) are

1, 5, 17, 61, 217, 773, 2753, 9805, 34921, 124373, . . .

The same sequence turns out to appear in [6] (see [11, A007483]). Thus, the following
proposition is true:

Proposition 3.5. The number of independent sets in the graph Pn
4 is equal to the number of

(possibly empty) subsequences of the sequence (1, 2, . . . , 2n + 1) in which each odd member has
an even neighbor.

Here, the neighbors of an integer m are m− 1 and m + 1. In the case n = 1, the sequences
appearing in the proposition are ε, 2, 23, 12, 123, where ε is the empty sequence. In this case, we
can �nd a direct bijection between the objects in Proposition 3.5 as described below.

We start by labeling the vertices of the (innermost) level n of Pn
4 clockwise by 2, 23, 12, 123.

The level n− 1 is labeled starting from the vertex immediately to the left of vertex labeled 2 as
follows: 4, 45, [3]4, [3]45 (the meaning of brackets will be discussed below). More generally, for
i < n, given a level n− i + 1 labeled clockwise with 2i, 2i(2i + 1), [2i− 1]2i, [2i− 1]2i(2i + 1), we
label the (next outer) level n− i clockwise from the inside out with 2i + 2, (2i + 2)(2i + 3), [2i +
1](2i+2), [2i+1](2i+2)(2i+3) starting from the vertex immediately to the left of vertex labeled
2i. (See Figure ?? for the case n = 3.) Each independent set has at most one vertex on each
level. Now, given any independent set in Pn

4 , we can write the labels of its nodes in increasing
order and delete any integer [2i − 1] in brackets if the sequence also contains 2i − 2 or 2i − 1
without brackets. Erasing all brackets now, if any, we obtain a sequence from Proposition 3.5.
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Figure 5: A labelling of P 3
4 by subsequences of Proposition 3.5.

Example 3.6. The independent sets {45, [5]67}, {4, [5]67}, {12, [5]6}, {[3]4, 67} correspond to the
sequences 4567, 467, 1256, 3467, respectively.

For convenience, we will write down the set of nonadjacent labels at level n− i for each label
at level n− i + 1.

(no label) ε 7→ (2i + 2), (2i + 2)(2i + 3), [2i + 1](2i + 2), [2i + 1](2i + 2)(2i + 3)
2i 7→ [2i + 1](2i + 2), [2i + 1](2i + 2)(2i + 3)

2i(2i + 1) 7→ (2i + 2), [2i + 1](2i + 2)(2i + 3)
[2i− 1]2i 7→ (2i + 2), (2i + 2)(2i + 3)

[2i− 1]2i(2i + 1) 7→ (2i + 2)(2i + 3), [2i + 1](2i + 2)

(4)

Now it is not di�cult to construct an independent set given a sequence of Proposition 3.5.
We partition the sequence of integers from 1 to 2n + 1 as follows:

123 | 45 | 67 | . . . | 2n(2n + 1),

then choose the vertices of the independent set in the order of increasing labels using the rules
(4). Notice that the label of the vertex at level n− i + 1 must contain 2i.

Example 3.7.
4567 7→ 123|45|67 7→ (ε, 45, [5]67) 7→ {45, [5]67}
467 7→ 123|45|67 7→ (ε, 4, [5]67) 7→ {45, [5]67}

1256 7→ 123|45|67 7→ (12, ε, [5]6) 7→ {12, [5]6}
It can be shown that the two maps described above are inverses of each other based on the

recursive structure of sequences under consideration.
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