
Using Tomography in Digital Plane to solve

problems of Geometric Tomography

Alain Daurat∗

Abstract

We study the problem of determining in a constructive way a convex
body in the plane from its tomographic projections. For this, we consider
the similar problem in digital plane: reconstructing a lattice convex set
from its discrete tomographic projection. We show that we can use a
reconstruction algorithm for the discrete problem to solve the continuous
reconstruction to any precision. The proof of this result uses stability
properties of geometric tomography. An extension to point-source tomo-
graphic projections is also investigated.

Parallel sources case

If F is a convex body of R2 and p = (a, b) is a direction then the (parallel source)
tomographic projection of F with respect to p (denoted XpF ) is defined by:

XpF (u) = length({(x, y) ∈ F : bx− ay = u}).

Hammer’s X-ray problem consists to reconstruct a convex body of R from a
minimum number of tomographic projections. This is the most classical problem
of Geometric Tomography ([5]).

In [8] the authors characterize completely the sets of directions which permit
to reconstruct all the convex sets.(such a set is called a Gardner-McMullen set
of directions. In particular it is proved that all the sets of directions which
provide uniqueness have a cardinal not less than four. But this result is not
constructive, it does not give a method to reconstruct the convex body from
its projections. In the literature there are several descriptions of constructive
methods which attempt to make this reconstruction: In [12] the authors are able
to reconstruct and infinite set of points of the border of the convex body but
until now we are not able to prove that this infinite set is dense in the border.
In [11], the authors construct a subset and a superset of approximative solution
by making some choices and use “filling operations”, but unfortunately there is
no proof that the sequence of the obtained solution converges to the good set
even when the directions provide uniqueness. In [7], the method reconstructs a
polygon which tomographic projections has the least square distance with the
projection. It is proven that the polygon tends to the set when the number of
vertices tends to infinity but it lacks an efficient method to find the polygon.
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In this paper we use another strategy which works only for rational direc-
tions. This strategy uses algorithms of Discrete Tomography. The main aim
of Discrete Tomography is to reconstruct a lattice set E ⊂ Z2 from discrete
tomographic projections defined by:

XpF (u) = card({(x, y) ∈ F : bx− ay = u}

where p = (a, b) is the direction of the projection ([9, 10]).
To solve Hammer’s X-ray problem, we will approximate the plane R2 by the

discrete plane rZ2 = {(rx, ry) : x, y ∈ Z} for a certain resolution r > 0. The
idea is to take r sufficiently small to make possible the reconstruction of the
search set at the wanted precision.

A lattice set (subset of Z2) is said to be convex if it is the intersection of
a convex subset of R2 with Z. So if F is a convex body that the lattice set
Fr =

(
1
r F

) ∩ Z2 is convex, moreover its tomographic projections satisfy:
⌊
XpF (kr)

r‖p‖
⌋
≤ XpFr(k) ≤

⌊
XpF (kr)

r‖p‖
⌋

+ 1 (1)

where bxc denotes the largest integral value not greater that x. The following
theorem shows that reciprocally if a sequence of sets satisfies Equation (1) then
it tends to F .

Theorem 1 Let D a Gardner-McMullen set of rational directions and (Er)r>0

a sequence of convex lattice sets such that for any p ∈ D and k ∈ Z:
⌊
XpF (kr)

r‖p‖
⌋
≤ XpEr(k) ≤

⌊
XpF (kr)

r‖p‖
⌋

+ 1 (2)

Then
area(conv(rEr)∆F ) −−−→

r→0
0.

(the notation ‖p‖ denotes
√

a2 + b2 if p = (a, b) and ∆ denotes the symmetrical
difference of sets). Notice that this theorem is a simplification of Proposition
20 of [2].
Sketch of proof : Suppose without loss of generality that D = {p1, p2, p3, p4}.
Let X be the function defined on the convex bodies by X (F ) = (Xp1F,Xp2F,Xp3F,Xp4F ).

In the following we suppose the the class of the convex bodies is embedded
with Hausdorff distance: dH(E, F ) = inf{ε : F1 ⊂ F2 + B(0, ε) and F2 ⊂
F1+B(0, ε)} or Nikodym distance dN (E, F ) = area(E∆F ) which anyway induce
the same topology. Similarly, the topology on the image of X is induced by the
product topology of Hausdorff/Nikodym distance of the Steiner symmetrals:
{(x, y) : −Xp(x)

2 ≤ y ≤ +Xp(x)
2 }, it is also equivalent to the topology induced

by the distance d(X (F ),X (F ′)) = max1≤i≤4

∫ +∞
−∞ |XpiF (α)−XpiF

′(α)|dα.
With these topologies, we know by [13] that the inverse function of X is

continuous.
Let E′

r = conv(rEr), we have:

XpE
′
r(kr)

r‖p‖ − 1 ≤ XpEr(k) ≤ XpE
′
r(kr)

r‖p‖ + 1 (3)
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So, by combining (2) and (3) we have:

XpF (kr)− 2r‖p‖ ≤ XpE
′
r(kr) ≤ XpF (kr) + 2r‖p‖

so by uniform continuity of the function x 7→ XpF (x) we have: d(X (E′
r),X (F )) −−−→

r→0

0 so dN (E′
r, F ) −−−→

r→0
0 by continuity of the inverse of X . ¤

So to reconstruct a sequence of sets which approximate the searched convex
body it is sufficient to solve, for a sequence of resolutions r which tends to zero,
the following problem of Discrete Tomography:
AppRec(B,D)
Input: A map f : D × Z→ N0 with finite support.
Output: A convex lattice set E ⊂ Z2, if it exists, which satisfies

f(p, k) ≤ XpE(k) ≤ f(p, k) + 1, for all (p, k) ∈ D × Z .

Theorem 1 shows that the construction of a solution to Hammer’s X-problem
can be made by solving AppRec(C,D) for the class C of convex lattice sets and
the discrete tomographic projections:

f(p, k) =

{
0 if kr is outside the closure of {x : XpF (x) = 0}⌊

XpF (kr)
r‖p‖

⌋
otherwise.

Unfortunately we do not know if there are efficient (for example polynomial-
time) algorithms which solve the problem AppRec(C,D).

However we can use filling operations and a recursive procedure to recon-
struct the set in a time which can be exponential in theory but looks experimen-
tally reasonable (see [3, section 7.4] for the extension of the filling operations to
the approximative case and for example [4, page 248] for the recursive proce-
dure).

Point sources case

Now we investigate the point-source extensions of the previous results. In Geo-
metric Tomography we define the projection XC(F ) of the body F ⊂ R2 with
respect to the center C by:

XCF (α) = length({M ∈ F : ĈM = α})

where ĈM denotes the angle between the unit vector (1, 0) and the vector
−−→
CM .

Notice that in this paper, the angle α is up to 2π: the length is taken on a semi-
line, the tomographic projections are directed. It is proved that any convex
body is completely determined by three tomographic projections with respect
to three non-collinear sources. ([14])

Similarly in Discrete Tomography, if C is an integer point the projection
XCF of a lattice set F with respect to the center C is defined by

XCF (α) = card({M ∈ F : ĈM = α}).

Notice that the support of the projection (set of α for which XCF (α) 6= 0) is
finite.
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We now extend Theorem 1 to the point-source case. For this extension
we will suppose that the point sources have integral coordinates and that the
resolution is of the form r = 1

n where n is an integer. Consequently the point
sources are also always in rZ2. We denote by RA the set of “rational” angles
{α : α = 0 mod π or tan α ∈ Q} and for any α ∈ RA we denote by ‖α‖ the
quantity:

‖α‖ =

{
1 if α = 0 mod π√

p2 + q2 where tan α = p
q such that p and q are coprime integers.

We can now formulate the theorem:

Theorem 2 Let C = {C1, C2, C3} be a set of three non-collinear points in Z2

and (En)n∈N∗ a sequence of lattice sets such that for any C ∈ C and any α ∈ RA
we have: ⌊

nXCF (α)
‖α‖

⌋
≤ XnCEn(α) ≤

⌊
nXCF (α)
‖α‖

⌋
+ 1 (4)

then
area(conv(rEn)∆F ) −−−→

r→0
0.

Sketch of proof : The proof is similar to the proof of Theorem 1. The main
differences are the consideration of the property (4) only for ‖α‖ ≤ √

n and the
use of the stability result of [1] instead the one of [13]. ¤
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