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1 Introduction
Let us denote byΠn,k the collection of permutations of σ = (σ1, σ2, . . . , σn) ∈
Sn with

σ1 < σ2 < . . . < σn−k (1)

and no increasing subsequence of length > n − k. Let Cnk denote the
collection of signed colored permutations of Sn such that

1) each entry is red or blue

2) the blue entries are increasing

3) the first n− k entries are blue

4) the sign is (−1)#blue last k

We can construct the elements of Cnk by �rst choosing which r of the
last k entries will be red, then �lling these entries in all possible ways with r
of the integers 1, 2, . . . , n and �nally placing the complementary n−r entries
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with the remaining integers in increasing order. This creates elements of
Cnk with k − r blue entries among the last k. Thus follows that we have

∑

σ∈Cnk

sign(σ) =
k∑

r=0

(
k

r

)
(−1)k−rn(n− 1) · · · (n− r + 1) (2)

Now it was noticed in [2], and proved, using the Theory of Character
Polynomials, that

#Πnk =
k∑

r=0

(
k

r

)
(−1)k−rn(n− 1) · · · (n− r + 1). (3)

This identity strongly suggests that #Πnk could be enumerated by using
this surprising connection of Πnk with Cnk to obtain (3) as a simple direct
application of the inclusion exclusion principle. To this date no such proof
has been found.

We will prove here that if we set

Πnk(q) =
∑

σ∈Πnk

qimaj(σ)

where imaj(σ) = maj(σ−1), we also have

Πnk(q) =
k∑

r=0

(
k

r

)
(−1)k−r[n]q[n− 1]q · · · [n− r + 1]q. (4)

In march 2008, in a talk at the MIT combinatorics seminar, the author
o�ered 100$ for an elementary proof of (3). Subsequently a number of
tentative solutions were proposed to the author. The winner solution was
submitted by Greta Panova who was able to extend her method to obtain
also the q-analogue in (4).

We will present here our original symmetric function proof of (4) since
the identities and manipulations involved in the proof should be at least
as signi�cant as the result itself. We will leave it to Panova to present her
proof of (4) in a separate publication.

The crucial ingredient in our proof is the symmetric function operator

Hm =
∑

r≥0

(−1)r hm+re
⊥
r . (5)
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where �e⊥r � denotes the operator adjoint of multiplication by er with respect
to the Hall scalar product. In particular we will use here the fact that

e⊥r sλ =
{

sλ/1r , if r ≤ l(λ);
0, otherwise.

It is well known [10] that if µ ` k and n − k is at least as large as the
�rst part of µ we have

s(n−k,µ)(x) = Hn−ksµ(x). (6)

In other words we can use Hm to add a row of length m to the index of a
Schur function. For this reason Hm is sometimes referred to as the �Schur

row adder �. It also goes by such fancy names as a �vertex operator �. All this
not withstanding, the identity in (6) is easily seen to be but an immediate
consequence of the well known Jacobi Trudi identities expressing a skew
Schur function in terms of the homogeneous symmetric function basis. To
see this simply note that we have

s3,3,2 = det




h3 h4 h5

h2 h3 h4

1 1 h2




= h3 det
(

h3 h4

h1 h2

)
− h4 det

(
h2 h4

1 h2

)
+ h5 det

(
h2 h3

1 h1

)
.

(7)

Now it follows again from the Jacobi Trudi identities that

det
(

h3 h5

h1 h2

)
= s32 , det

(
h2 h5

1 h2

)
= s32/1 ,

det
(

h2 h3

1 h1

)
= s32/11

Thus (7) is none other than

s3,3,2 = h3 s32 − h4 s32/1 + h5 s32/11

which is an instance of (6). This kind of proof of (7) may be more digestible
to most practicioners of symmetric function theory. Actually, (6) is quite
a bit more elementary than the Jacobi Trudi identities. Indeed, it can be
shown (see [2]) that it is an immediate consequence of Frobenius original
construction of the irreducible characters of Sn.
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We will show in the end that the operator Hm can be also used to
prove the existence of several q, t analogues of (4). We will leave as an
open problem to discover the nature of the permutation statistics that are
involved in the corresponding q, t-enumerations.

2 The q-enumeration
Before we can proceed with our proof, we need to make preliminary obser-
vations and establish some auxiliary identities.

Recall that a theorem of Schensted [11] states that the permutations of
Sn with maximal increasing subsequences of length m are precisely those
whose pairs of tableaux under the Robinson Schensted correspondence have
a �rst row of length m. Moreover, if σ → (P, Q) under RS then the condition
in (1) holds if and only if Q has

1, 2, . . . n− k

in its �rst row. It follows then that to construct an element σ ∈ Πn,k

we simply take a pair of standard tableaux P, Q of shape (n − k, µ) with
Q having 1, 2, . . . n − k in the �rst row and then get σ by reversing the
Robinson Schensted correspondence on the pair (P,Q). More precisely, we
have

Πn,k = RS−1
⋃

µ`k

{
(P,Q) : P,Q ∈ ST (n− k, µ) &

the �rst row of Q is 1, 2, . . . n− k
}

(8)

Note that to obtain a standard tableau of shape (n−k, µ) with 1, 2, . . . , n−
k in its �rst row we need only take a standard tableau of shape µ, add
n − k to its entries and prepend to the resulting tableau a row of length
n− k containing 1, 2, . . . n− k from left to right. It follows from this simple
observation, that, at least for n ≥ 2k(†) , the polynomial Πn,k(q) may be
computed by means of the following identity.

Proposition 2.1

Πn,k(q) =
∑

µ`k

fµ

∑

P∈ST (n−k,µ)

qmaj(P ). (9)

(†)To assure that for each µ ` k, (n− k, µ) is a partition
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Proof. It is well known that if, under the RS correspondence, a permutation
σ maps to the pair (P,Q) then the descent set of the inverse of σ is given by
the descent set of P . The latter being the set of i such that i + 1 is NW of
in P (in the french depiction of P ). Thus (9) is an immediate consequence
of (8). ¤

This given, the proof of (4) is reduced to symmetric function manipula-
tions by the following auxiliary result.

Theorem 2.2 Setting

φn,k =
∑

µ`k

fµsn−k,µ (10)

we have, for n ≥ 2k

Πn,k(q) =
〈
φn,k , H̃n

〉
(11)

where
〈
,
〉
denotes the Hall scalar product of symmetric functions and H̃n

denotes the graded Frobenius characteristic of the Harmonics of Sn.

H̃n(x; q) = (q, q)n

∑

λ`n

sλ(x)sλ

[
1

1−q

]
=

∑

λ`n

sλ(x)
∑

P∈ST (λ)

qmaj(P ) (12)

with
(q, q)n = (1− q)(1− q2) · · · (1− qn).

In particular, using the the identity en
1 =

∑
λ`n fλsλ ([10] p. 114 ,(7.6) )

we also derive that

#Πn,k = Πn,k(1) =
〈
φn,k , en

1

〉
. (13)

Proof. Using the expansions in (10) and (12), the orthonormality of the
Schur function basis with respect to the Hall scalar product gives

〈
φn,k , H̃n

〉
=

∑

µ`k

fµ

〈
sn−k,µ , H̃n

〉
=

∑

µ`k

fµ

∑

P∈ST (n−k,µ)

qmaj(P )

Thus (11) is only another way of writing (9). ¤
To compute the scalar product in (11) we will use the �row adding �

formula in (6). In fact, this enables us to convert (11) and (13) into the
following identities.



238 A. M. GARSIA

Proposition 2.3

Πn,k(q) =
k∑

s=0

(
k

s

)
(−1)k−s

〈
hn−se

s
1 , H̃n

〉
(14)

#Πn,k =
k∑

s=0

(
k

s

)
(−1)k−s

〈
hn−se

s
1 , en

1

〉
(15)

Proof. Using (6) we may write

φn,k =
∑

µ`k

fµsn−k,µ =
∑

µ`k

fµ Hn−k sµ = Hn−k

∑

µ`k

fµ sµ = Hn−ke
k
1.

(16)
But (5) gives

Hn−ke
k
1 =

∑

r≥0

(−1)r hn−k+re
⊥
r ek

1

and since e1 = p1 we have (by the linearity of the �⊥� operator)

e⊥r ek
1 =

∑

ρ`r

p⊥ρ pk
1

zρ
=

1
r!

∂r
p1

pk
1 =

1
r!

k(k−1) · · · (k−r+1) pk−r
1 =

(
k

r

)
ek−r
1

(16) becomes

φn,k =
∑

r≥0

(
k

r

)
(−1)r hn−k+r ek−r

1 . (17)

Using this in (11) and (13) gives

Πn,k(q) =
∑

r≥0

(
k

r

)
(−1)r

〈
hn−k+r ek−r

1 , H̃n

〉

and
#Πn,k =

∑

r≥0

(
k

r

)
(−1)r

〈
hn−k+r ek−r

1 , en
1

〉

and the proof of (14) and (15) is completed by the change of summation
index r → k − s. ¤

This brings us in a position to give our
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Proof of (4). As a warm up let us show how we can quickly dispose of (3).
In fact, (15) gives

#Πn,k =
k∑

s=0

(
k

s

)
(−1)k−s

〈
hn−se

s
1 , en

1

〉

=
k∑

s=0

(
k

s

)
(−1)k−s

〈
hn−s , (es

1)
⊥en

1

〉

=
k∑

s=0

(
k

s

)
(−1)k−s n(n− 1) · · · (n− s + 1)

〈
hn−s , en−s

1

〉

and (9) follows since the orthonormality of the Schur functions gives

〈
hn−s , en−s

1

〉
=

∑

µ`n−s

fµ

〈
sn−s , sµ

〉
= 1.

The derivation of (4) is a little more elaborate. To begin we must recall
that we have (see [10] Ch. 5)

∑

P∈ST (λ)

qmaj(P ) = (q, q)nsλ(1, q, q2, . . .) = (q, q)nsλ

[
1

1−q

]
.

Thus, using the Cauchy formula hn[AB] =
∑

λ`n sλ[A]sλ[B] with A = X
and B = 1

1−q , the expansion in (12) may also be rewritten in the simple
plethystic form

H̃n(x; q) = (q, q)n hn

[
X

1−q

]
(18)

and we can write
〈
hn−se

s
1 , H̃n

〉
= (q, q)n

〈
hn−se

s
1 , hn

[
X

1−q

]〉
. (19)

To compute the latter scalar product, we have a cute trick that considerably
simpli�es our calculations. Namely, it follows from the de�nition of the Hall
scalar product that for any two power basis elements pα, pβ we have

〈
pα[X] , pβ

[
X

1−q

]〉
= χ(α = β)zβpβ

[
1

1−q

]
= χ(α = β)zαpα

[
1

1−q

]

=
〈
pα

[
X

1−q

]
, pβ[X]

〉
.
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Using this (19) becomes
〈
hn−se

s
1 , H̃n

〉
= (q, q)n

〈
hn−s

[
X

1−q

]
es
1

[
X

1−q

]
, hn

〉

=
(q, q)n

(1− q)s

〈
hn−s

[
X

1−q

]
es
1 , hn

〉

=
(q, q)n

(1− q)s

〈
hn−s

[
X

1−q

]
, (es

1)
⊥hn

〉

=
(q, q)n

(1− q)s

〈
hn−s

[
X

1−q

]
, hn−s

〉
(20)

and since (18) and (12) yield

(q, q)n−s hn−s

[
X

1−q

]
= H̃n−s(x; q) =

∑

λ`n−s

sλ(x)
∑

P∈ST (λ)

qmaj(P )

it follows that
〈
hn−s

[
X

1−q

]
, hn−s

〉
=

1
(q, q)n−s

〈
H̃n−s , hn−s

〉
=

1
(q, q)n−s

and (20) becomes

〈
hn−se

s
1 , H̃n

〉
=

(q, q)n

(1− q)s

1
(q, q)n−s

=
1

(1− q)s

∏n
i=1(1− qi)∏n−s
i=1 (1− qi)

= [n]q[n− 1]q · · · [n− s + 1]q.

Using this in (14) completes our proof of (4). ¤

3 A q, t-enumeration problem
Garsia-Haiman in [4] introduced rescaled versions H̃µ(X; q, t) of the Mac-
donald polynomials and conjectured that, for µ ` n they are the Frobenius
characteristics of certain q, t-analogues of the left regular representation of
Sn. In particular it follows that

H̃µ(X; q, t)
∣∣∣
t,q=1

= en
1 . (21)

Moreover it is also shown in [4] that for µ a single row or a single column
we have

H̃n = (q, q)nhn

[
X

1−q

]
, H̃1n = (t, t)nhn

[
X

1−t

]
. (22)
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In view of our preceding considerations, these two facts suggest that we
should also study, for each µ ` n the following q, t-analogues of the polyno-
mial in (11), namely

Πµ,k(q, t) =
〈
φn,k , H̃µ

〉
. (23)

Note that from (21) and our proof of (4) it follows that for all µ ` n we
have

Πµ,k(q, t)
∣∣∣
t,q=1

=
k∑

r=0

(
k

r

)
(−1)k−rn(n− 1) · · · (n− r + 1). (24)

Moreover, it is also shown in [4] that we have the Schur function expansions

H̃µ(X; q, t) =
∑

λ`n

sλ(X)K̃λµ(q, t) (25)

where
K̃λµ(q, t) = TµKλµ(q, 1/t)

with Kλµ(q, t) the original [10] Macdonald q, t Kostka coe�cients and Tµ =
tn(µ)qn(µ′)(†) . Since the Garsia-Haiman conjectures were eventually proved
by Mark Haiman in [9] it is now a theorem that for each pair λ, µ the
polynomial K̃λµ(q, t) has positive integer coe�cients. Now using (25) in
(23), the de�nition in (10) (with µ replaced by ν ) gives

Πµ,k(q, t) =
∑

ν`k

fνK̃(n−k,ν),µ(q, t). (26)

Thus it is also a theorem (albeit not at all trivial) that this polynomial has
also positive integer coe�cients. So the question then arises:

What is Πµ,k(q, t) q, t-enumerating and by what statistics?

A strong clue in trying to answer this question is the result of Haglund-
Haiman-Loehr in [8] yielding a combinatorial formula for the polynomials
H̃µ(X; q, t). To be more explicit, we need to give a version of the Haglund-
Haiman-Loehr construction in a notation that is more suitable to the present
context.

Chosen a µ ` n , for each permutation σ = (σ1, σ2, . . . , σn) ∈ Sn, let
Tµ(σ) be the injective tableau obtained by �lling the cells of the (french)

(†) For µ = (µ1, µ2, . . . , µk) we set n(µ) =
Pk

i=1(i− 1)µi
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Ferrers diagram of µ with the entries σ1, σ2, . . . , σn, by rows proceeding
from top to bottom and from left to right. Now, denoting by Ti,j the
entry of a tableau T that is in the ith row (starting from the bottom)
and in the jth column (from left to right), Jim Haglund introduced, for
µ = (µ1, µ2, . . . , µk), the statistic

invµ(T ) =
∑

1≤i<j≤µ1

χ
(
T1,i > T1,j

)
+

k∑

r=2

∑

1≤i<j≤µr

E(Tr−1,i, Tr,i, Tr,j).

(27)
Where for three distinct integers a, b, c he sets

E(a, b, c) = χ(a < c < b) + χ(b < a < c) + χ(c < b < a).

More visually, (27) simply consists adding to the number of inversions in the
�rst row of T , the number of triplets

[ Tr,i · · · Tr,j

Tr−1,i

]
of T that admit

an increasing counterclockwise cyclic rearrangement. Denoting by Cj(T )
the word obtained by reading the jth column of T from top to bottom, Jim
Haglund also sets

majµ(T ) =
µ1∑

j=1

maj
(
Cj(T )

)
. (28)

This given, Haglund-Haiman-Loehr in [8] prove that

H̃µ(X; q, t) =
∑

σ∈Sn

qinvµ

(
T (σ)

)
tmajµ

(
T (σ)

)
Qides(σ)[X] (29)

where for a subset S ⊆ [1, 2, . . . , n − 1] the symbol QS [X] denotes the
corresponding Gessel quasi-symmetric polynomial and �ides(σ)� denotes
the descent set of σ−1. For our needs here we do not need the explicit
de�nition of QS [X] since Gessel in [7] showed that if the polynomial

P [X] =
∑

S⊆[1,2,...,n−1]

CSQS [X]

is symmetric then for any p = (p1, p2, . . . , pk) composition of n, then the
Hall scalar product 〈

P , hp1hp2 · · ·hpk−1
hpk

〉

evaluates to the sum
∑

S⊆{p1,p1+p2,...,p1+p2+···+pk−1}
CS .
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In particular, using this fact together with (29), we can immediately derive
a combinatorial interpretation for the scalar product

〈
H̃µ , hn−se

s
1

〉

as being none other than the sum
〈
H̃µ , hn−sh

s
1

〉

=
∑

σ∈Sn

qinvµ

(
T (σ)

)
tmajµ

(
T (σ)

)
χ(ides(σ) ⊆ {n− s + 1, . . . , n− 1, n})

=
∑

σ∈Sn

qinvµ

(
T (σ−1)

)
tmajµ

(
T (σ−1)

)
χ(σ1 < σ2 < . . . < σn−s) (30)

This given, it is easy to see that, starting from the de�nition in (23) and
using (17), the same calculations we carried out in the proof of Proposition
(9) yield us the identity

Πµ,k(q, t)

=
k∑

s=0

(
k

s

)
(−1)k−s

∑

σ∈Sn

qinvµ

(
T (σ−1)

)
tmajµ

(
T (σ−1)

)
χ(σ1 < σ2 < . . . < σn−s)

(31)

which is precisely a q, t-analogue of the right-hand side of (2). That is we
have

Πµ,k(q, t) =
∑

σ∈Cnk

sign(σ)qinvµ

(
T (σ)

)
tmajµ

(
T (σ)

)
(32)

Since we have noted that the resulting polynomial has positive coe�cients
we are again led to conclude that there must be another inclusion-exclusion
mechanism underlying this identity.

The �rst impulse is to suspect that (31) should simply reduce to

Πµ,k(q, t) =
∑

σ∈Πn,k

qinvµ

(
T (σ)

)
tmajµ

(
T (σ)

)
. (33)

In fact, computer experimentations, have revealed that this is true in a
variety of cases but not true in full generality. We are grateful to Greta
Panova for pointing out this fact. This circumstance adds a further puzzling
aspect to our q, t-enumeration problem.
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Representing a polynomial

2∑

i=0

3∑

j=0

ci,jt
iqj

by the matrix 


c2,0 c2,1 c2,2 c2,3

c1,0 c1,1 c1,2 c1,3

c0,0 c0,1 c0,2 c0,3




Here are a few samples:

Π[2,2],2(q, t) =




1 1 0
0 1 1
0 0 1


 , Π[3,2],2(q, t) =




1 1 0 0
0 2 3 1
0 0 1 2




Π[4,2],2(q, t) =




1 1 0 0 0 0
0 2 4 3 1 0
0 0 1 2 3 1




Π[5,2],2(q, t) =




1 1 0 0 0 0 0 0
0 2 4 4 3 1 0 0
0 0 1 2 3 4 2 1




Π[3,3],2(q, t) =




1 2 2 1 0
0 2 3 3 1
0 0 1 2 1


 , Π[4,3],2(q, t) =




1 2 2 1 0 0
0 2 4 5 3 1
0 0 1 2 3 2




Π[5,3],2(q, t) =




1 2 2 1 0 0 0 0
0 2 4 6 5 3 1 0
0 0 1 2 3 4 3 1




Π[6,3],2(q, t) =




1 2 2 1 0 0 0 0 0 0
0 2 4 6 6 5 3 1 0 0
0 0 1 2 3 4 5 4 2 0




Π[5,3],3(q, t) =




1 2 2 1 0 0 0 0 0 0
0 3 9 14 14 9 4 1 0 0
0 0 3 9 18 23 20 12 4 1
0 0 0 1 3 6 9 11 8 3
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Note that, even if we identify what is being q, t-counted, to complete the
picture we should try to get an explicit formula for the polynomial

Γµ,s(q, t) =
〈
H̃µ , hn−sh

s
1

〉
(34)

which, if none other, should be a q, t-analogue of n(n− 1) · · · (n− s + 1).
It is interesting to note that some of the Macdonald polynomial machin-

ery developed in [1] and [3], may be used to solve also this portion of our
puzzle. To see how this comes about, we begin by writing Γµ,s(q, t) in the
form

Γµ,s(q, t) =
〈
e⊥1 H̃µ , hn−sh

s−1
1

〉
(35)

then use the �dual Pieri Rule � (see [5])

e⊥1 H̃µ(X; q, t) =
∑
ν→µ

cµν(q, t)H̃ν
(†) (36)

and obtain the recursion
Γµ,s(q, t) =

∑
ν→µ

cµν(q, t) Γµ,s−1(q, t). (37)

Explicit combinatorial expressions for the coe�cients cµν(q, t) were derived
in [6] from the original [10] Stanley-Macdonald Pieri rules. Since they turned
out to be some pretty �erce rational functions, several identities were de-
veloped in [3] (see also [1]) for the evaluations of such sums as in (37). One
of the summation formulas can be stated as follows
Theorem 3.1 Let ∇ be the operator whose action on symmetric functions
is de�ned by setting for all µ

∇H̃µ = TµH̃µ (38)
and for each partition µ set

Bµ(q, t) =
∑

(i,j)∈µ

tj−1qi−1 (39)

where �(i, j) ∈ µ� is to signify that the sum is over the cells of the Ferrers
diagram of µ with i, j the cartesian coordinates of the NE corner of a cell.
Then for any symmetric function F we have

∑
ν→µ

cµν(q, t) F [MBν − 1] = G[MBµ − 1]

(with M = (1− t)(1− q)),
(†) �ν → µ� is to signify that ν is obtained from µ by removing a corner square
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where
G[X] = ∇−1 e1+1

M ∇F [X]. (40)

Now it was shown in [4] that we have
∑
ν→µ

cµν(q, t) = Bµ(q, t) (41)

and since we also have for µ ` n

Γµ,0(q, t) =
〈
H̃µ , hn

〉
= 1,

using (41) in (37) for s = 1 we derive that

Γµ,1(q, t) = Bµ(q, t)

which is as beautiful a q, t-analogue of n as we could desire. Using this, the
recursion in (37), for s = 2 gives

Γµ,2(q, t) =
∑
ν→µ

cµν(q, t)Bν(q, t)

=
∑
ν→µ

cµν(q, t) e1+1
M

[
MBν − 1

]

(by Theorem 3.1) = ∇−1 e1+1
M ∇ e1+1

M

[
MBµ − 1

]

= ∇−1
(

e1+1
M

)2 [
MBµ − 1

]

since the de�nition in (38) gives

∇ e1+1
M = e1+1

M

and we can easily see that iterating this process yields the general formula

Γµ,s(q, t) = ∇−1
(

e1+1
M

)s [
MBµ − 1

]
. (42)

This can be made more explicit by eliminating the presence of ∇ by means
of the identity (see [3])

∇−1e1∇ = D∗
1 (43)

where D∗
1 is but one instance of the family of symmetric function operators

de�ned by the plethystic formula

D∗
k F [X] =

(
F

[
X − M

qtz

] ∑

m≥0

zmhm[X]
)∣∣∣

zk
. (44)
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In fact, since ∇1 = 1, using (43), we can write

∇−1er
1 = ∇−1er

1∇ 1 = D∗
1
r

and (42) becomes

Γµ,s(q, t) =
(

D∗1+1
M

)s
1
[
MBµ − 1

]
(45)

yielding as a q, t-analogue of (4) the formula

Πµ,k(q, t) =
k∑

r=0

(
k

r

)
(−1)k−r

(
D∗1+1

M

)s
1
[
MBµ − 1

]
. (46)

We will leave it to further work to work out, if possible, a more explicit
version of this identity.
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