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t. This paper is a 
ontinuation of the systemati
 study of the distributions of quadrant marked mesh patternsinitiated in [6℄. Given a permutation σ = σ1 · · ·σn in the symmetri
 group Sn, we say that σi mat
hes the quadrantmarked mesh pattern MMP (a, b, c, d) if there are at least a elements to the right of σi in σ that are greater than σi, atleast b elements to left of σi in σ that are greater than σi, at least c elements to left of σi in σ that are less than σi,and at least d elements to the right of σi in σ that are less than σi. We study the distribution of MMP (a, b, c, d) in132-avoiding permutations. In parti
ular, we study the distribution of MMP (a, b, c, d), where only one of the parameters
a, b, c, d are non-zero. In subsequent papers [7, 8℄, we will study the the distribution of MMP (a, b, c, d) in 132-avoidingpermutations where at least two of the parameters a, b, c, d are non-zero.Mathemati
s Subje
t Classi�
ation(2010). 05A15, 05E05.Keywords: permutation statisti
, marked mesh pattern, distribution, Catalan number, Fibona

i number, Fine number.1 Introdu
tionThe notion of mesh patterns was introdu
ed by Brändén and Claesson [1℄ to provide expli
it expansionsfor 
ertain permutation statisti
s as (possibly in�nite) linear 
ombinations of (
lassi
al) permutationpatterns. This notion was further studied in [4, 6, 11℄. The present paper, as well as the up
oming
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ontinuations of the systemati
 study of distributions of quadrant marked meshpatterns on permutations initiated by Kitaev and Remmel [6℄.In this paper, we study the number of o

urren
es of what we 
all quadrant marked mesh patterns.To start with, let σ = σ1 · · · σn be a permutation written in one-line notation. Then we will 
onsiderthe graph of σ, G(σ), to be the set of points {(i, σi) : 1 ≤ i ≤ n}. For example, the graph of thepermutation σ = 471569283 is pi
tured in Figure 1. Then if we draw a 
oordinate system 
entered ata point (i, σi), we will be interested in the points that lie in the four quadrants I, II, III, and IV ofthat 
oordinate system as pi
tured in Figure 1. For any a, b, c, d ∈ N, where N = {0, 1, 2, . . .} is theset of natural numbers, we say that σi mat
hes the quadrant marked mesh pattern MMP (a, b, c, d)in σ if, in the 
oordinate system 
entered at (i, σi), G(σ) has at least a points in quadrant I, at least
b points in quadrant II, at least c points in quadrant III, and at least d points in quadrant IV. Forexample, if σ = 471569283, then σ4 = 5 mat
hes MMP (2, 1, 2, 1), sin
e relative to the 
oordinatesystem with origin (4, 5), G(σ) has 3, 1, 2, and 2 points in quadrants I, II, III, and IV, respe
tively.Note that if a 
oordinate in MMP (a, b, c, d) is 0, then there is no 
ondition imposed on the points inthe 
orresponding quadrant.In addition, we shall 
onsider quadrant marked mesh patterns MMP (a, b, c, d) where a, b, c, d ∈
N∪{∅}. Here, when a 
oordinate of MMP (a, b, c, d) is ∅, there must be no points in the 
orrespondingquadrant for σi to mat
h MMP (a, b, c, d) in σ. For example, if σ = 471569283, then σ3 = 1 mat
hes
MMP (4, 2, ∅, ∅), sin
e relative to the 
oordinate system with origin (3, 1), G(σ) has 6, 2, 0, and 0points in quadrants I, II, III, and IV, respe
tively. We let mmp(a,b,c,d)(σ) denote the number of i su
hthat σi mat
hes MMP (a, b, c, d) in σ.
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Figure 1: The graph of σ = 471569283.Note how the (two-dimensional) notation of Úlfarsson [11℄ for marked mesh patterns 
orrespondsto our (one-line) notation for quadrant marked mesh patterns. For example,
MMP(0, 0, k, 0) =

k

, MMP(k, 0, 0, 0) =
k

,
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MMP(0, a, b, c) =

a

b c

, and MMP(0, 0, ∅, k) =
k

.Given a sequen
e w = w1 · · ·wn of distin
t integers, let red(w) be the permutation found byrepla
ing the ith largest integer that appears in w by i. For example, if w = 2754, then red(w) = 1432.Given a permutation τ = τ1 · · · τj ∈ Sj , we say that the pattern τ o

urs in σ ∈ Sn if there exist
1 ≤ i1 < · · · < ij ≤ n su
h that red(σi1 · · · σij ) = τ . We say that a permutation σ avoids the pattern τif τ does not o

ur in σ. We will let Sn(τ) denote the set of permutations in Sn that avoid τ . In thetheory of permutation patterns, τ is 
alled a 
lassi
al pattern. See [5℄ for a 
omprehensive introdu
tionto the area of permutation patterns.It has been a rather popular dire
tion of resear
h in the literature on permutation patterns to studypermutations avoiding a 3-letter pattern subje
t to extra restri
tions (see [5, Subse
tion 6.1.5℄). Themain goal of this paper and the up
oming papers [7, 8℄ is to study the generating fun
tions

Q
(a,b,c,d)
132 (t, x) = 1 +

∑

n≥1

tnQ
(a,b,c,d)
n,132 (x), (1)where for any a, b, c, d ∈ N ∪ {∅},

Q
(a,b,c,d)
n,132 (x) =

∑

σ∈Sn(132)

xmmp(a,b,c,d)(σ). (2)More pre
isely, we will study the generating fun
tions Q
(a,b,c,d)
132 (t, x) in all 
ases where exa
tly one ofthe 
oordinates a, b, c, d is non-zero and the remaining 
oordinates are 0 plus the generating fun
tions

Q
(k,0,∅,0)
132 (t, x) and Q

(∅,0,k,0)
132 (t, x). In [7, 8℄, we will study the generating fun
tions Q

(a,b,c,d)
132 (t, x) for

a, b, c, d ∈ N where at least two of the parameters a, b, c, d are greater than 0.For example, here are two tables of statisti
s for S3(132) that we will be interested in.
σ mmp(1,0,0,0)(σ) mmp(0,1,0,0)(σ) mmp(0,0,1,0)(σ) mmp(0,0,0,1)(σ)123 2 0 2 0213 2 1 1 1231 1 1 1 2312 1 2 1 1321 0 2 0 2
σ mmp(2,0,0,0)(σ) mmp(0,2,0,0)(σ) mmp(0,0,2,0)(σ) mmp(0,0,0,2)(σ)123 1 0 1 0213 0 0 1 0231 0 1 0 0312 0 0 0 1321 0 1 0 1Note that there is one obvious symmetry in this 
ase. That is, we have the following lemma.



222 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKLemma 1.1 For any a, b, c, d ∈ N ∪ {∅}, Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x).Proof. If we start with the graph G(σ) of a permutation σ ∈ Sn(132) and re�e
t the graph about theline y = x, then we get the permutation σ−1, whi
h is also in Sn(132). It is easy to see that points inquadrants I, II, III, and IV in the 
oordinate system with origin (i, σi) in G(σ) will re�e
t to pointsin quadrants I, IV, III, and II, respe
tively, in the 
oordinate system with origin (σi, i) in G(σ−1). Itfollows that the map σ → σ−1 shows that Q

(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x). 2As a matter of fa
t, avoidan
e of a marked mesh pattern MMP (a, b, c, d) with a, b, c, d ∈ N 
analways be expressed in terms of multi-avoidan
e of (usually many) 
lassi
al patterns. For example,a permutation σ ∈ Sn avoids the pattern MMP (2, 0, 0, 0) if and only if it avoids both 123 and 132.Thus, among our results we will re-derive several known fa
ts in the permutation patterns theory andget seemly new enumeration of permutations avoiding simultaneously the patterns 132 and 1234 (seethe dis
ussion right below (13)). However, our main goals are more ambitious in that we will 
omputethe generating fun
tion for the distribution of the o

urren
es of the pattern in question, not just thegenerating fun
tion for the number of permutations that avoid the pattern.For any a, b, c, d, we will write Q

(a,b,c,d)
n,132 (x)|xk for the 
oe�
ient of xk in Q

(a,b,c,d)
n,132 (x). We shallalso show that sequen
es of the form (Q

(a,b,c,d)
n,132 (x)|xr)n≥s 
ount a variety of 
ombinatorial obje
ts thatappear in the On-line En
y
lopedia of Integer Sequen
es (OEIS) [9℄. Thus, our results will give new
ombinatorial interpretations of su
h 
lassi
al sequen
es as the Fine numbers and the Fibona

i num-bers, as well as provide 
ertain sequen
es that appear in the OEIS with a 
ombinatorial interpretationwhere none had existed before.2 Conne
tions with other 
ombinatorial obje
tsIt is well-known that the 
ardinality of Sn(132) is the nth Catalan number Cn = 1

n+1

(2n
n

). There aremany 
ombinatorial interpretations of the Catalan numbers. For example, in his book [10℄, Stanleylists 66 di�erent 
ombinatorial interpretations of the Catalan numbers, and he gives many more 
om-binatorial interpretations of the Catalan numbers on his web site. Hen
e, any time one has a naturalbije
tion from Sn(132) into a set of 
ombinatorial obje
ts On 
ounted by the nth Catalan number, one
an use the bije
tion to transfer our statisti
s mmp(a,b,c,d) to 
orresponding statisti
s on the elementsof On. In this se
tion, we shall brie�y des
ribe some of these statisti
s in two of the most well-knowninterpretations of the Catalan numbers, namely Dy
k paths and binary trees.A Dy
k path of length 2n is a path that starts at (0, 0) and ends at the point (2n, 0) that 
onsistsof a sequen
e of up-steps (1, 1) and down-steps (1,−1) su
h that the path always stays on or abovethe x-axis. We will generally en
ode a Dy
k path by its sequen
e of up-steps and down-steps. Let D2ndenote the set of Dy
k paths of length 2n. Then it is easy to 
onstru
t a bije
tion φn : Sn(132) → D2nby indu
tion. To de�ne φn, we need to de�ne the lifting of a path P ∈ D2n to a path L(P ) ∈ D2n+2.Here L(P ) is 
onstru
ted by simply appending an up-step at the start of P and a down-step at theend of P . That is, if P = (p1, . . . , p2n), then L(P ) = ((1, 1), p1, . . . , p2n, (1,−1)). An example of thismap is pi
tured in Figure 2. If P1 ∈ D2k and P2 ∈ D2n−2k, we let P1P2 denote the element of D2n that
onsists of the path P1 followed by the path P2.To de�ne φn, we �rst let φ1(1) = ((1, 1), (1,−1)). For any n > 1 and any σ ∈ Sn(132), we de�ne
φn(σ) by 
ases as follows.
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Figure 2: The lifting of a Dy
k path.Case 1. σn = n.Then φn(σ) = L(φn−1(σ1 · · · σn−1)).Case 2. σi = n, where 1 ≤ i < n. In this 
ase, φn(σ) = P1P2, where
P1 = φi(red(σ1 · · · σi)) and P2 = φn−i(red(σi+1 · · · σn)) = φn−i(σi+1 · · · σn).We have pi
tured this map for the �rst few values of n by listing the permutation σ on the leftand the value of φn(σ) on the right in Figure 3.Suppose we are given a path P = (p1, . . . , p2n) ∈ D2n. Then we say that a step pi has height s if
pi is an up-step and the right-hand end point of pi is (i, s) or pi is a down-step and the left-hand endpoint of pi is (i − 1, s). We say that (pi, . . . , pi+2k−1) is an interval of length 2k if pi is an up-step,
pi+2k−1 is a down-step, pi and pi+2k−1 have height 1, and, for all i < j < i + 2k − 1, the height of pj isstri
tly greater than 1. Thus, an interval is a segment of the path that starts and ends on the x-axisbut does not hit the x-axis in between. For example, if we 
onsider the path φ3(312) = (p1, . . . , p6)pi
tured in Figure 3, then the heights of the steps reading from left to right are 1, 1, 1, 2, 2, 1 and thereare two intervals, one of length 2 
onsisting of (p1, p2) and one of length 4 
onsisting of (p3, p4, p5, p6).The following theorem is straightforward to prove by indu
tion.Theorem 2.1 Let k ≥ 1.1. For any σ ∈ Sn(132), mmp(k,0,0,0)(σ) is equal to the number of up-steps (equivalently, to thenumber of down-steps) of height ≥ k + 1 in φn(σ).



224 S. KITAEV, J. REMMEL AND M. TIEFENBRUCK
1

21

312

123

321

213

12 231

Figure 3: Some initial values of the map φn.2. For any σ ∈ Sn(132), 1 plus the maximum k su
h that mmp(0,0,k,0)(σ) 6= 0 is equal to one halfthe maximum length of an interval in φn(σ).Proof. We pro
eed by indu
tion on n. Clearly the theorem is true for n = 1. Now supposethat n > 1 and the theorem is true for all m < n. Let σ ∈ Sn(132) with σi = n. Then itmust be the 
ase that σ1, . . . , σi−1 are all stri
tly bigger than all the elements in {σi+1, . . . , σn}, so
{1, . . . , n − i} = {σi+1, . . . , σn} and {n − i + 1, . . . , n} = {σ1, . . . , σi}. Now 
onsider the two 
ases inthe de�nition of φn.Case 1. σn = n.In this 
ase, φn(σ) = L(P ), where P = φn−1(σ1 · · · σn−1). Thus, for k ≥ 2, the number of up-steps of height > k in φn(σ) equals the number of up-steps of height ≥ k in φn−1(σ1 · · · σn−1),whi
h equals mmp(k−1,0,0,0)(σ1 · · · σn−1) by indu
tion. But sin
e σn = n, it is 
lear that for k ≥ 2,
mmp(k−1,0,0,0)(σ1 · · · σn−1) = mmp(k,0,0,0)(σ). Thus, mmp(k,0,0,0)(σ) equals the number of up-steps ofheight > k in φn(σ). Finally, mmp(1,0,0,0)(σ) = n − 1, and there are n − 1 up-steps of height ≥ 2 in
φn(σ).In this 
ase, the maximum length of an interval in φn(σ) equals 2n and σn = n shows that
mmp(0,0,n−1,0)(σ) = 1, so one half of the maximum length interval in φn(σ) equals 1 plus the maxi-mum k su
h that mmp(0,0,k,0)(σ) 6= 0.Case 2. σi = n, where 1 ≤ i ≤ n − 1.In this 
ase, φn(σ) = P1P2, where P1 = φi(red(σ1 · · · σi)) and P2 = φn−i(σi+1 · · · σn). It follows thatfor any k ≥ 1, the number of up-steps of height > k in φn(σ) equals the number of up-steps of height
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> k in P1 plus the number of up-steps of height > k in P2, whi
h by indu
tion is equal to

mmp(k,0,0,0)(red(σ1 · · · σi)) + mmp(k,0,0,0)(σi+1 · · · σn).But 
learly
mmp(k,0,0,0)(σ) = mmp(k,0,0,0)(red(σ1 · · · σi)) + mmp(k,0,0,0)(σi+1 · · · σn),so mmp(k,0,0,0)(σ) is equal to the number of up-steps of height > k in φn(σ).Finally, the maximum length of an interval in φn(σ) is the maximum of the maximum lengthintervals in P1 and P2. On the other hand, the maximum k su
h that mmp(0,0,k,0)(σ) 6= 0 is themaximum k su
h that mmp(0,0,k,0)(red(σ1 · · · σi)) 6= 0 or

mmp(0,0,k,0)(σi+1 · · · σn) 6= 0. Thus, it follows from the indu
tion hypothesis that one half of themaximum length of an interval in φn(σ) is 1 plus the maximum k su
h that mmp(0,0,k,0)(σ) 6= 0. 2We have the following 
orollary to Theorem 2.1.Corollary 2.2 Let k ≥ 1.1. The number of permutations σ ∈ Sn(132) su
h that mmp(k,0,0,0)(σ) = 0 equals the number ofDy
k paths P ∈ D2n su
h that all steps have height ≤ k.2. The number of permutations σ ∈ Sn(132) su
h that mmp(0,0,k,0)(σ) = 0 equals the number ofDy
k paths P ∈ D2n su
h that the maximum length of an interval is ≤ 2k.Another set 
ounted by the Catalan numbers is the set of rooted binary trees on n nodes whereea
h node is either a leaf, a node with a left 
hild, a node with a right 
hild, or a node with both aright and a left 
hild. Let Bn denote the set of rooted binary trees with n nodes. Then it is well-knownthat |Bn| = Cn. In this paper, we shall draw binary trees with their root at the bottom and the treegrowing upward. Again it is easy to de�ne a bije
tion θn : Sn(132) → Bn by indu
tion. Start with asingle node, denoted the root, and let i be su
h that σi = n. Then, if i > 1, the root will have a left
hild, and the subtree above that 
hild is θi−1(red(σ1 · · · σi−1)). If i < n, then the root will have aright 
hild, and the subtree above that 
hild is θn−i(σi+1 · · · σn). We have pi
tured the �rst few valuesof this map by listing a permutation σ on the left and the value of θn(σ) on the right in Figure 4.If T ∈ Bn and η is a node of T , then the left subtree of η is the subtree of T whose root is the left
hild of η and the right subtree of η is the subtree of T whose root is the right 
hild of η. The edgethat 
onne
ts η to its left 
hild will be 
alled a left edge and the edge that 
onne
ts η to its right 
hildwill be 
alled a right edge.The following theorem is straightforward to prove by indu
tion.Theorem 2.3 Let k ≥ 1.1. For any σ ∈ Sn(132), mmp(k,0,0,0)(σ) is equal to the number of nodes η in θn(σ) su
h that thereare ≥ k left edges on the path from η to the root of θn(σ).2. For any σ ∈ Sn(132), mmp(0,0,k,0)(σ) is the number of nodes η in θn(σ) whose left subtree hassize ≥ k.
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Figure 4: Some initial values of the map θn.Proof. We pro
eed by indu
tion on n. Clearly the theorem is true for n = 1. Now suppose that n > 1and the theorem is true for all m < n. Let σ ∈ Sn(132) with σi = n, let r be the root of θn(σ), and let
η be a node in θn(σ).If η is in r's left subtree, then η has ≥ k left edges on the path to r if and only if it has ≥ k − 1left edges on the path to the root of the left subtree of r. If η is in r's right subtree, then η has
≥ k left edges on the path to r if and only if it has ≥ k left edges on the path to the root of theright subtree of r. Therefore, by the indu
tion hypothesis the number of nodes with ≥ k left edgeson the path to the root is mmp(k−1,0,0,0)(red(σ1 · · · σi−1)) + mmp(k,0,0,0)(σi+1 · · · σn), regarding ea
hterm as 0 if there is no 
orresponding subtree. However, sin
e ea
h term in σ1 · · · σi−1 has n tothe right of it and n never mat
hes MMP (k, 0, 0, 0), we see that mmp(k−1,0,0,0)(red(σ1 · · · σi−1)) =
mmp(k,0,0,0)(red(σ1 · · · σi)). Thus, the number of nodes with ≥ k left edges on the path to the root is
mmp(k,0,0,0)(red(σ1 · · · σi)) + mmp(k,0,0,0)(σi+1 · · · σn) = mmp(k,0,0,0)(σ).It is 
lear that the number of nodes with left subtrees of size ≥ k is equal to the sum of those fromea
h subtree of the root, possibly plus one for the root itself. In other words, if χ(statement) equals 1if the statement is true and 0 otherwise, then by the indu
tion hypothesis, the number of su
h nodesis mmp(0,0,k,0)(red(σ1 · · · σi−1))+mmp(0,0,k,0)(σi+1 · · · σn)+χ(i > k), again regarding ea
h term as 0 ifthere is no 
orresponding subtree. However, sin
e n does not a�e
t whether any other point mat
hes
MMP (0, 0, k, 0) and itself mat
hes whenever i > k, we see this number of nodes is pre
isely equal to
mmp(0,0,k,0)(σ). 2Thus, we have the following 
orollary.Corollary 2.4 Let k ≥ 1.1. The number of permutations σ ∈ Sn(132) su
h that mmp(k,0,0,0)(σ) = 0 equals the number of



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 227rooted binary trees T ∈ Bn that have no nodes η with ≥ k left edges on the path from η to theroot of T .2. The number of permutations σ ∈ Sn(132) su
h that mmp(0,0,k,0)(σ) = 0 equals the number ofrooted binary trees T ∈ Bn su
h that there is no node η of T whose left subtree has size ≥ k.3 The fun
tion Q
(k,0,0,0)
132 (t, x)In this se
tion, we shall study the generating fun
tion Q

(k,0,0,0)
132 (t, x) for k ≥ 0.Throughout this paper, we shall 
lassify the 132-avoiding permutations σ = σ1 · · · σn by the positionof n in σ. Let S

(i)
n (132) denote the set of σ ∈ Sn(132) su
h that σi = n.Clearly the graph G(σ) of ea
h σ ∈ S

(i)
n (132) has the stru
ture pi
tured in Figure 5. That is,in G(σ), the elements to the left of n, Ai(σ), have the stru
ture of a 132-avoiding permutation, theelements to the right of n, Bi(σ), have the stru
ture of a 132-avoiding permutation, and all the elementsin Ai(σ) lie above all the elements in Bi(σ). As mentioned above, |Sn(132)| = Cn = 1

n+1

(

2n
n

). Thegenerating fun
tion for these numbers is given by
C(t) =

∑

n≥0

Cntn =
1 −

√
1 − 4t

2t
=

2

1 +
√

1 − 4t
. (3)

ni1

1

n

A (σ)

(σ)B

i

i

Figure 5: The stru
ture of 132-avoiding permutations.Clearly,
Q

(0,0,0,0)
132 (t, x) =

∑

n≥0

Cnxntn = C(xt) =
1 −

√
1 − 4xt

2xt
.
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onsider Q
(k,0,0,0)
132 (t, x) for k ≥ 1. It is not di�
ult to see that Ai(σ) will 
ontribute

mmp(k−1,0,0,0)(red(Ai(σ))) to mmp(k,0,0,0)(σ), sin
e ea
h of the elements to the left of n will mat
hthe pattern MMP (k, 0, 0, 0) in σ if and only if it mat
hes the pattern MMP (k − 1, 0, 0, 0) in thegraph of Ai(σ). Similarly, Bi(σ) will 
ontribute mmp(k,0,0,0)(red(Bi(σ))) to mmp(k,0,0,0)(σ) be
ausethe elements to the left of Bi(σ) have no e�e
t on whether an element in Bi(σ) mat
hes the pattern
MMP (k, 0, 0, 0) in σ. It follows that

Q
(k,0,0,0)
n,132 (x) =

n
∑

i=1

Q
(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x). (4)Multiplying both sides of (4) by tn and summing for n ≥ 1, we see that

−1 + Q
(k,0,0,0)
132 (t, x) = tQ

(k−1,0,0,0)
132 (t, x) Q

(k,0,0,0)
132 (t, x).Hen
e for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1 − tQ
(k−1,0,0,0)
132 (t, x)

.Thus, we have the following theorem.Theorem 3.1
Q

(0,0,0,0)
132 (t, x) = C(xt) =

1 −
√

1 − 4xt

2xt
(5)and, for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1 − tQ
(k−1,0,0,0)
132 (t, x)

. (6)Theorem 3.1 immediately implies the following 
orollary.Corollary 3.2
Q

(1,0,0,0)
132 (t, 0) =

1

1 − t
(7)and, for k ≥ 2,

Q
(k,0,0,0)
132 (t, 0) =

1

1 − tQ
(k−1,0,0,0)
132 (t, 0)

. (8)
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it formulas for Q
(k,0,0,0)
n,132 (x)|xrFirst we shall 
onsider the problem of 
omputing Q

(k,0,0,0)
n,132 (x)|x0 . That is, we shall be interested in thegenerating fun
tions Q

(k,0,0,0)
132 (t, 0). Using Corollary 3.2, one 
an easily 
ompute that

Q
(2,0,0,0)
132 (t, 0) =

1 − t

1 − 2t
,

Q
(3,0,0,0)
132 (t, 0) =

1 − 2t

1 − 3t + t2
,

Q
(4,0,0,0)
132 (t, 0) =

1 − 3t + t2

1 − 4t + 3t2
,

Q
(5,0,0,0)
132 (t, 0) =

1 − 4t + 3t2

1 − 5t + 6t2 − t3
,

Q
(6,0,0,0)
132 (t, 0) =

1 − 5t + 6t2 − t3

1 − 6t + 10t2 − 4t3
, and

Q
(7,0,0,0)
132 (t, 0) =

1 − 6t + 10t3 − 4t3

1 − 7t + 15t2 − 10t3 + t4
.By Corollary 2.2, Q

(k,0,0,0)
132 (t, 0) is also the generating fun
tion for the number of Dy
k pathswhose maximum height is less than or equal to k. For example, this interpretation is given to se-quen
e A080937 in the OEIS, whi
h is the sequen
e (Q

(5,0,0,0)
n,132 (0))n≥0, and to sequen
e A080938 inthe OEIS, whi
h is the sequen
e (Q

(7,0,0,0)
n,132 (0))n≥0. However, similar interpretations are not given to

(Q
(k,0,0,0)
n,132 (0))n≥0, where k /∈ {5, 7}. For example, su
h an interpretation is not found for

(Q
(2,0,0,0)
n,132 (0))n≥0, (Q

(3,0,0,0)
n,132 (0))n≥0, (Q

(4,0,0,0)
n,132 (0))n≥0, (Q

(6,0,0,0)
n,132 (0))n≥0,whi
h are sequen
es A011782, A001519, A124302, and A024175 in the OEIS, respe
tively. Similarly,by Corollary 2.4, the generating fun
tion Q

(k,0,0,0)
132 (t, 0) is the generating fun
tion for the number ofrooted binary trees T that have no nodes η su
h that there are ≥ k left edges on the path from η tothe root of T .We 
an easily 
ompute the �rst few terms of Q

(k,0,0,0)
132 (t, x) for small k using Mathemati
a. Forexample, we have 
omputed the following.

Q
(1,0,0,0)
132 (t, x) = 1 + t + (1 + x)t2 +

(

1 + 2x + 2x2
)

t3 +
(

1 + 3x + 5x2 + 5x3
)

t4
(

1 + 4x + 9x2 + 14x3 + 14x4
)

t5 +
(

1 + 5x + 14x2 + 28x3 + 42x4 + 42x5
)

t6 +
(

1 + 6x + 20x2 + 48x3 + 90x4 + 132x5 + 132x6
)

t7 +
(

1 + 7x + 27x2 + 75x3 + 165x4 + 297x5 + 429x6 + 429x7
)

t8 +
(

1 + 8x + 35x2 + 110x3 + 275x4 + 572x5 + 1001x6 + 1430x7 + 1430x8
)

t9 + · · · .In this 
ase, it is quite easy to explain some of the 
oe�
ients that appear in the polynomials
Q

(1,0,0,0)
n,132 (x). Some of these explanations are given in the following theorem.



230 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKTheorem 3.3 1. Q
(1,0,0,0)
n,132 (0) = 1 for n ≥ 1,2. Q

(1,0,0,0)
n,132 (x)|x = n − 1 for n ≥ 2,3. Q
(1,0,0,0)
n,132 (x)|x2 =

(

n
2

)

− 1 for n ≥ 3,4. Q
(1,0,0,0)
n,132 (x)|xn−1 = Cn−1 for n ≥ 1, and5. Q
(1,0,0,0)
n,132 (x)|xn−2 = Cn−1 for n ≥ 2.Proof. There is only one permutation σ ∈ Sn with mmp(1,0,0,0)(σ) = 0, namely, σ = n(n − 1) · · · 1.Thus, the 
onstant term in Q

(1,0,0,0)
n,132 (x) is always 1. Also the only way to get a permutation σ ∈ Snthat has mmp(1,0,0,0)(σ) = n−1 is to have σn = n. It follows that the 
oe�
ient of xn−1 in Q

(1,0,0,0)
n,132 (x)is the number of permutations σ ∈ Sn(132) su
h that σn = n, whi
h is 
learly Cn−1. It is also easy tosee that the only permutations σ ∈ Sn(132) with mmp(1,0,0,0)(σ) = 1 are the permutations of the form

σ = n(n − 1) · · · (i + 1)(i − 1)i(i − 2) · · · 21.Thus, the 
oe�
ient of x in Q
(1,0,0,0)
n,132 (x) is always n − 1.For (3), note that we have Q

(1,0,0,0)
3,132 (x)|x2 = 2 =

(3
2

)

− 1. For n ≥ 4, let a(n) denote the 
oe�
ientof x2 in Q
(1,0,0,0)
n,132 (x). The permutations σ ∈ Sn(132) su
h that mmp(1,0,0,0)(σ) = 2 must have either

σ1 = n, σ2 = n, or σ3 = n. If σ3 = n, it must be the 
ase that {σ1, σ2} = {n − 1, n − 2} and that
mmp(1,0,0,0)(σ4 · · · σn) = 0. Thus, σ4 · · · σn must be de
reasing, so there are exa
tly two permutations
σ ∈ Sn(132) su
h that σ3 = n and mmp(1,0,0,0)(σ) = 2. If σ2 = n, it must be the 
ase that σ1 = n − 1and that mmp(1,0,0,0)(σ3 · · · σn) = 1. In that 
ase, we know that there are n − 3 
hoi
es for σ3 · · · σn,so there are n − 3 permutations σ ∈ Sn(132) su
h that σ2 = n and mmp(1,0,0,0)(σ) = 2. Finally,it is 
lear that if σ1 = n, then we must have that mmp(1,0,0,0)(σ2 · · · σn) = 2, so there are a(n − 1)permutations σ ∈ Sn(132) su
h that σ1 = n and mmp(1,0,0,0)(σ) = 2. Thus, we have shown that
a(n) = a(n − 1) + n − 1 from whi
h it easily follows by indu
tion that a(n) =

(

n
2

)

− 1.Finally, for (5), let σ = σ1 · · · σn ∈ Sn(132) be su
h that mmp(1,0,0,0)(σ) = n−2. We 
learly 
annothave σn = n, so n and σn must be the two elements of σ that do not mat
h the pattern MMP (1, 0, 0, 0)in σ. Now if σi = n, then Bi(σ) 
onsists of the elements 1, . . . , n − i. But then it must be the 
asethat σn = n− i. Note that this implies that σn 
an be removed from σ in a 
ompletely reversible way.That is, σ → red(σ1 · · · σn−1) is a bije
tion onto Sn−1(132). Hen
e there are Cn−1 su
h σ. 2We have 
omputed that
Q

(2,0,0,0)
132 (t, x) = 1 + t + 2t2 + (4 + x)t3 +

(

8 + 4x + 2x2
)

t4 +
(

16 + 12x + 9x2 + 5x3
)

t5 +
(

32 + 32x + 30x2 + 24x3 + 14x4
)

t6 +
(

64 + 80x + 88x2 + 85x3 + 70x4 + 42x5
)

t7 +
(

128 + 192x + 240x2 + 264x3 + 258x4 + 216x5 + 132x6
)

t8 +
(

256 + 448x + 624x2 + 760x3 + 833x4 + 819x5 + 693x6 + 429x7
)

t9 + · · · .Again it is easy to explain some of these 
oe�
ients. That is, we have the following theorem.
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(2,0,0,0)
n,132 (0) = 2n−1 if n ≥ 3,2. for n ≥ 3, the highest power of x that appears in Q

(2,0,0,0)
n,132 (x) is xn−2, with

Q
(2,0,0,0)
n,132 (x)|xn−2 = Cn−2, and3. Q
(2,0,0,0)
n,132 (x)|x = (n − 2)2n−3 for n ≥ 3.Proof. It is easy to see that the only σ ∈ Sn(132) that have mmp(2,0,0,0)(σ) = n − 2 must have

σn−1 = n − 1 and σn = n. Note that if σn−1 = n and σn = n − 1 then we have an o

urren
e of 132for n ≥ 3. Thus, the 
oe�
ient of xn−2 in Q
(2,0,0,0)
n,132 (x) is Cn−2 if n ≥ 3.The fa
t that Q

(2,0,0,0)
n,132 (0) = 2n−1 for n ≥ 1 is an immediate 
onsequen
e of the fa
t that

Q
(2,0,0,0)
132 (t, 0) = 1−t

1−2t
. In fa
t, this is a known result, sin
e avoidan
e of the pattern MMP (2, 0, 0, 0)is equivalent to avoiding simultaneously the (
lassi
al) patterns 132 and 123 (see [5, p. 224℄). One
an also give a simple 
ombinatorial proof of this fa
t. Clearly it is true for n = 1. For n ≥ 2, notethat σ1 must be either n or n − 1. Also, red(σ2 · · · σn) must avoid the pattern MMP (2, 0, 0, 0). Sin
eevery permutation red(σ2 · · · σn) avoiding MMP (2, 0, 0, 0) 
an be obtained in this manner in exa
tlytwo ways, on
e with σ1 = n and on
e with σn = n − 1, we see that there are 2 · 2n−2 = 2n−1 su
h σ.The initial terms of the sequen
e (Q

(2,0,0,0)
132 (t, x)|x)n≥3 are

1, 4, 12, 32, 80, 192, 448, . . . ,whi
h are the initial terms of sequen
e A001787 in OEIS whose n-th term is an = n2n−1. Now anhas many 
ombinatorial interpretations in
luding the number of edges in the n-dimensional hyper
ubeand the number of permutations in Sn+2(132) with exa
tly one o

urren
e of the pattern 123. Theordinary generating fun
tion of the sequen
e is x
(1−2x)2 , whi
h implies that

Q
(2,0,0,0)
132 (t, x)|x =

t3

(1 − 2t)2
.This 
an be proved in two di�erent ways. That is, for any k ≥ 2,

Q
(k,0,0,0)
132 (t, x)|x =

(

1

1 − tQ
(k−1,0,0,0)
132 (t, x)

)

∣

∣

x

=



1 +
∑

n≥1

tn(Q
(k−1,0,0,0)
132 (t, x))n





∣

∣

x

=
∑

n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1Q

(k−1,0,0,0)
132 (t, x)|x

= Q
(k−1,0,0,0)
132 (t, x)|x

∑

n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1. (9)
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d

dt
Q

(k,0,0,0)
132 (t, 0) =

d

dt

(

1

1 − tQ
(k−1,0,0,0)
132 (t, 0)

)

=
∑

n≥1

n(tQ
(k−1,0,0,0)
132 (t, 0))n−1 d

dt

(

tQ
(k−1,0,0,0)
132 (t, 0)

)

,so
t d
dt

Q
(k,0,0,0)
132 (t, 0)

d
dt

(

tQ
(k−1,0,0,0)
132 (t, 0)

) =
∑

n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1. (10)Combining (9) and (10), we obtain the following re
ursion.Theorem 3.5 For k ≥ 1,

Q
(k,0,0,0)
132 (t, x)|x = Q

(k−1,0,0,0)
132 (t, x)|x

t d
dt

Q
(k,0,0,0)
132 (t, 0)

d
dt

(

tQ
(k−1,0,0,0)
132 (t, 0)

) . (11)We know that
Q

(1,0,0,0)
132 (t, x)|x =

∑

n≥2

(n − 1)tn =
t2

(1 − t)2and
Q

(1,0,0,0)
132 (t, 0) =

1

1 − t
and Q

(2,0,0,0)
132 (t, 0) =

1 − t

1 − 2t
.Thus,

Q
(2,0,0,0)
132 (t, x)|x = Q

(1,0,0,0)
132 (t, x)|x

t d
dt

Q
(2,0,0,0)
132 (t, 0)

d
dt

(

tQ
(1,0,0,0)
132 (t, 0)

)

=
t2

(1 − t)2

t d
dt

(

1−t
1−2t

)

d
dt

t
1−t

=
t3

(1 − 2t)2
.We 
an also give a dire
t proof of this result. That is, we 
an give a dire
t proof of the fa
t that for

n ≥ 3, b(n) = Q
(2,0,0,0)
n,132 (x)|x = (n−2)2n−3. Note that b(3) = 1 = (3−2)23−3 and b(4) = (4−2)24−3 = 4,so our 
laim holds for n = 3, 4. Then let n ≥ 5 and assume by indu
tion that b(k) = (k − 2)2k−3for 3 ≤ k < n. Now suppose that σ ∈ S

(i)
n (132) and mmp(2,0,0,0) = 1. If the element of σ thatmat
hes MMP (2, 0, 0, 0) o

urs in Ai(σ), then it must be the 
ase that mmp(1,0,0,0)(Ai(σ)) = 1 and

mmp(2,0,0,0)(Bi(σ)) = 0. By our previous results, we have (i−2) 
hoi
es for Ai(σ) and a(n−i) = 2n−i−1
hoi
es for Bi(σ). Note that this 
an happen only for 3 ≤ i ≤ n − 1, so su
h permutations 
ontribute
n−1
∑

i=3

(i − 2)2n−i−1 =

n−3
∑

j=1

j2n−3−j =

n−4
∑

k=0

(n − 3 − k)2k
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hes MMP (2, 0, 0, 0) o

urs in Bi(σ), then we 
learly have
mmp(1,0,0,0)(Ai(σ)) = 0, whi
h means that Ai(σ) is de
reasing and mmp(2,0,0,0)(Bi(σ)) = 1. This 
anhappen only for 1 ≤ i ≤ n − 3. Thus, su
h permutations will 
ontribute

b(3) + · · · + b(n − 1) =

n−1
∑

i=3

(i − 2)2(i−3) =

n−4
∑

k=0

(k + 1)2kto b(n). The only permutations that we have not a

ounted for are the permutations σ = σ1 · · · σn ∈
Sn(132) where σn = n and mmp(1,0,0,0)(σ1 · · · σn−1) = 1, and there are n−2 su
h permutations. Thus,

b(n) = (n − 2) +

n−4
∑

k=0

2k(n − 3 − k + k + 1)

= (n − 2)

(

1 +

n−4
∑

k=0

2k

)

= (n − 2)(1 + 2n−3 − 1) = (n − 2)2n−3.

2We 
an also explain the 
oe�
ient of se
ond highest power of x that appears in Q
(k,0,0,0)
n,132 (x) for

k ≥ 2.Theorem 3.6 For all k ≥ 2 and n ≥ k + 2,
Q

(k,0,0,0)
n,132 (x)|xn−k−1 = Cn−k + 2(k − 1)Cn−k−1. (12)Proof. We �rst 
onsider the 
ase k = 2. That is, we must 
ompute Q

(2,0,0,0)
n,132 (x)|xn−3 . In this 
ase,

Q
(2,0,0,0)
n,132 (x) =

n
∑

i=1

Q
(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x).We have shown that for n ≥ 1, the highest power of x that o

urs in Q

(1,0,0,0)
n,132 (x) is xn−1 and, for

n ≥ 2, the highest power of x that o

urs in Q
(2,0,0,0)
n,132 (x) is xn−2. It follows that for i = 2, . . . , n − 2,the highest power of x whi
h o

urs in Q

(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) is less than n − 3 so that we have onlythree 
ases to 
onsider.Case 1. i = 1.In this 
ase, Q

(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) = Q

(2,0,0,0)
n−1,132(x) and we know that

Q
(2,0,0,0)
n−1,132(x)|xn−3 = Cn−3 for n ≥ 4.Case 2. i = n − 1.In this 
ase, Q

(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) = Q

(1,0,0,0)
n−2,132(x) and we know that

Q
(2,0,0,0)
n−2,132(x)|xn−3 = Cn−3 for n ≥ 4.
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ase, Q
(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) = Q

(1,0,0,0)
n−1,132(x) and we know that

Q
(1,0,0,0)
n−1,132(x)|xn−3 = Cn−2 for n ≥ 4.Thus for n ≥ 4, Q

(2,0,0,0)
n,132 (x)|xn−3 = Cn−2 + 2Cn−3.Now suppose that k ≥ 3 and we have proved by indu
tion that

Q
(k−1,0,0,0)
n,132 (x)|xn−k = Cn−k+1 + 2(k − 2)Cn−k for n ≥ k + 1. In this 
ase,

Q
(k,0,0,0)
n,132 (x) =

n
∑

i=1

Q
(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x).We have shown that for n ≥ k, the highest power of x that o

urs in Q

(k−1,0,0,0)
n,132 (x) is xn−k+1 and,for n ≥ k + 1, the highest power of x that o

urs in Q

(k,0,0,0)
n,132 (x) is xn−k. It is easy to 
he
k that for

i = 2, . . . , n − 2, the highest power of x whi
h o

urs in Q
(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) is less that n − k − 1so that we have only three 
ases to 
onsider.Case 1. i = 1.In this 
ase, Q

(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x) = Q

(k,0,0,0)
n−1,132(x) and we know that

Q
(k,0,0,0)
n−1,132(x)|xn−k−1 = Cn−1−k for n ≥ k + 2.Case 2. i = n − 1.In this 
ase, Q

(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x) = Q

(k−1,0,0,0)
n−2,132 (x) and we know that

Q
(k−1,0,0,0)
n−2,132 (x)|xn−k−1 = Cn−k−1 for n ≥ k + 2.Case 3. i = n.In this 
ase, Q

(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x) = Q

(k−1,0,0,0)
n−1,132 (x) and we know by indu
tion that

Q
(k−1,0,0,0)
n−1,132 (x)|xn−k−1 = Cn−k + 2(k − 2)Cn−k−1 for n ≥ k + 2.Thus for n ≥ k + 2, Q

(k,0,0,0)
n,132 (x)|xn−k−1 = Cn−k + 2(k − 1)Cn−k−1. 2We note that the sequen
e (Q

(2,0,0,0)
n,132 (x)|xn−3)n≥4 is sequen
e A038629 in the OEIS whi
h previouslyhad no 
ombinatorial interpretation. The sequen
es (Q

(3,0,0,0)
n,132 (x)|xn−4)n≥5 and (Q

(4,0,0,0)
n,132 (x)|xn−5)n≥6do not appear in the OEIS.We have 
omputed that

Q
(3,0,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (13 + x)t4 +

(

34 + 6x + 2x2
)

t5 +
(

89 + 25x + 13x2 + 5x3
)

t6 +
(

233 + 90x + 58x2 + 34x3 + 14x4
)

t7 +
(

610 + 300x + 222x2 + 158x3 + 98x4 + 42x5
)

t8 +
(

1597 + 954x + 783x2 + 628x3 + 468x4 + 300x5 + 132x6
)

t9 + · · · .
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e (Q
(3,0,0,0)
n,132 (0))n≥0 is sequen
e A001519 in the OEIS whose terms satisfy the re
ursion

a(n) = 3a(n− 1)− a(n− 2) with a(0) = a(1) = 1. That is, sin
e Q
(3,0,0,0)
132 (t, 0) = 1−2t

1−3t+t2
, it is easy tosee that for n ≥ 2,

Q
(3,0,0,0)
n,132 (0) = 3Q

(3,0,0,0)
n−1,132(0) − Q

(3,0,0,0)
n−2,132(0) (13)with Q

(3,0,0,0)
0,132 (0) = Q

(3,0,0,0)
1,132 (0) = 1.Avoidan
e of MMP (3, 0, 0, 0) is equivalent to avoiding the six (
lassi
al) patterns of length 4beginning with 1 as well as the pattern 132, whi
h, in turn, is equivalent to avoidan
e of 132 and1234 simultaneously. Even though A001519 in the OEIS gives a relevant 
ombinatorial interpretationas the number of permutations σ ∈ Sn+1 that avoid the patterns 321 and 3412 simultaneously, ourenumeration of permutations avoiding at the same time 132 and 1234 seems to be new thus extendingthe results in Table 6.3 in [5℄.Problem 1 Can one give a 
ombinatorial proof of (13)?Problem 2 Do any of the known bije
tions between Sn(132) and Sn(321) (see [5, Chapter 4℄) send

(132, 1234)-avoiding permutations to (321, 3412)-avoiding permutations? If not, �nd su
h a bije
tion.The sequen
e (Q
(3,0,0,0)
n,132 (x)|x)n≥4 is sequen
e A001871 in the OEIS, whi
h has the generating fun
-tion 1

(1−3x+x2)2
. The nth term of this sequen
e 
ounts the number of 3412-avoiding permutations
ontaining exa
tly one o

urren
e of the pattern 321. We 
an use the re
ursion (11) to prove thatthese sequen
es are the same. That is,

Q
(3,0,0,0)
132 (t, x)|x = Q

(2,0,0,0)
132 (t, x)|x

t d
dt

Q
(3,0,0,0)
132 (t, 0)

d
dt

(

tQ
(2,0,0,0)
132 (t, 0)

)

=
t3

(1 − 2t)2
·
t d
dt

(

1−2t
1−3t+t2

)

d
dt

t(1−t)
1−2t

=
t4

(1 − 3t − t2)2
.We have 
omputed that

Q
(4,0,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (41 + x)t5 +

(

122 + 8x + 2x2
)

t6 +
(

365 + 42x + 17x2 + 5x3
)

t7 +
(

1094 + 184x + 94x2 + 44x3 + 14x4
)

t8 +
(

3281 + 731x + 431x2 + 251x3 + 126x4 + 42x5
)

t9 + · · · .The sequen
e (Q
(4,0,0,0)
132 (t, 0))n≥1 is A007051 in the OEIS. It is easy to 
ompute that

Q
(4,0,0,0)
132 (t, 0) =

1 − 3t + t2

1 − 4t + 3t2

=
1 − 3t + t2

(1 − t)(1 − 3t)

= 1 +
∑

n≥1

3n−1 + 1

2
tn.
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(4,0,0,0)
n,132 (0) = 3n−1+1

2 , whi
h also 
ounts the number of ordered trees with n− 1 edgesand height at most 4.The sequen
e (Q
(4,0,0,0)
132 (t, x)|x)n≥5, whose initial terms are

1, 8, 42, 184, 731, . . . ,does not appear in the OEIS. However, we 
an use the re
ursion (11) to �nd its generating fun
tion.That is,
Q

(4,0,0,0)
132 (t, x)|x = Q

(3,0,0,0)
132 (t, x)|x

t d
dt

Q
(4,0,0,0)
132 (t, 0)

d
dt

(

tQ
(3,0,0,0)
132 (t, 0)

)

=
t4

(1 − 3t + t2)2

t d
dt

(

1−3t+t2

1−4t+3t2

)

d
dt

t(1−2t)
1−3t+t2

=
t5

(1 − 4t + 3t2)2
.4 The fun
tion Q

(0,0,k,0)
132 (t, x)In this se
tion, we shall study the generating fun
tion Q

(0,0,k,0)
132 (t, x) for k ≥ 1. Fix k ≥ 1. It is easyto see that Ai(σ) will 
ontribute mmp(0,0,k,0)(red(Ai(σ))) to mmp(0,0,k,0)(σ), sin
e neither n nor anyof the elements to the right of n have any e�e
t on whether an element in Ai(σ) mat
hes the pattern

MMP (0, 0, k, 0) in σ. Similarly, Bi(σ) will 
ontribute mmp(0,0,k,0)(red(Bi(σ))) to mmp(0,0,k,0)(σ),sin
e neither n nor any of the elements to the left of n have any e�e
t on whether an element in Bi(σ)mat
hes the pattern MMP (0, 0, k, 0) in σ. Note that n will 
ontribute 1 to mmp(0,0,k,0) if and only if
k < i.It follows that

Q
(0,0,k,0)
n,132 (x) =

k
∑

i=1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x) + x

n
∑

i=k+1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x). (14)Note that if i ≤ k, Q

(0,0,k,0)
i−1,132 (x) = Ci−1. Thus,

Q
(0,0,k,0)
n,132 (x) =

k
∑

i=1

Ci−1Q
(0,0,k,0)
n−i,132 (x) + x

n
∑

i=k+1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x). (15)Multiplying both sides of (15) by tn and summing for n ≥ 1 shows that

− 1 + Q
(0,0,k,0)
132 (t, x) =

t(C0 + C1t + · · · + Ck−1t
k−1)Q

(0,0,k,0)
132 (t, x)+

txQ
(0,0,k,0)
132 (t, x)(Q

(0,0,k,0)
132 (t, x) − (C0 + C1t + · · · + Ck−1t

k−1)).
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 equation
0 = 1 − (−1 + (t − tx)(C0 + C1t + · · · + Ck−1t

k−1))Q
(0,0,k,0)
132 (t, x) + tx(Q

(0,0,k,0)
132 (t, x))2. (16)This implies the following theorem.Theorem 4.1 For k ≥ 1,

Q
(0,0,k,0)
132 (t, x) =

1 + (tx − t)(
∑k−1

j=0 Cjt
j) −

√

(1 + (tx − t)(
∑k−1

j=0 Cjtj))2 − 4tx

2tx
(17)

=
2

1 + (tx − t)(
∑k−1

j=0 Cjtj) +
√

(1 + (tx − t)(
∑k−1

j=0 Cjtj))2 − 4txand
Q

(0,0,k,0)
132 (t, 0) =

1

1 − t(C0 + C1t + · · · + Ck−1tk−1)
. (18)By Corollary 2.2, Q

(0,0,k,0)
132 (t, 0) is also the generating fun
tion of the number of Dy
k paths thathave no interval of length ≥ 2k and the generating fun
tion of the number of rooted binary trees Tsu
h that T has no node η whose left subtree has size ≥ k.4.1 Expli
it formulas for Q

(0,0,k,0)
n,132 (x)|xrIt is easy to explain the highest power and the se
ond highest power of x that o

urs in Q

(0,0,k,0)
n,132 (x)for any k ≥ 1.Theorem 4.2 1. For all k ≥ 1 and n > k, the highest power of x that o

urs in Q

(0,0,k,0)
n,132 (x) is

xn−k, with Q
(0,0,k,0)
n,132 (x)|xn−k = Ck, and2. Q

(0,0,k,0)
n,132 (x)|xn−k−1 = Ck+1 − Ck + 2(n − k − 1)Ck−1.Proof. For (1), it is easy to see that, for any k ≥ 1, the maximum number of

MMP (0, 0, k, 0)-mat
hes o

urs in a permutation σ = σ1 · · · σn ∈ Sn(132) only when σ1 · · · σk ∈
Sk(132) and σk+1 · · · σn = (k + 1)(k + 2) · · · n. Thus, Q

(0,0,k,0)
n,132 (x)|xn−k = Ck for n ≥ k + 1.For (2), suppose that k ≥ 3, and de�ne an,k = Q

(0,0,k,0)
n,132 (x)|xn−k−1 , where n > k +1. Then, supposethat σ = σ1 · · · σn+1 ∈ Sn+1(132) is su
h that mmp(0,0,k,0)(σ) = n − k. By de�nition, the numberof su
h σ is an+1,k. Then, if σn+1 = n + 1, we must have mmp(0,0,k,0)(σ1 · · · σn) = n − k − 1, so wehave an,k 
hoi
es for σ1 · · · σn. If σ1 = n + 1, then mmp(0,0,k,0)(σ2 · · · σn+1) = n − k, so we have Ck−1
hoi
es for σ2 · · · σn+1. If σn = n + 1, then σn+1 = 1 and mmp(0,0,k,0)(σ1 · · · σn−1) = n − k − 1, so wehave Ck−1 
hoi
es for σ1 · · · σn−1. If σi = n + 1, where 2 ≤ i ≤ k, then σ1 · · · σi 
annot 
ontributeto mmp(0,0,k,0)(σ), so mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(σk+1 · · · σn+1) ≤ n − i − k < n − k − 1. If

σi = n + 1, where n − k + 1 ≤ i ≤ n − 1, then σi+1 · · · σn+1 
annot 
ontribute to mmp(0,0,k,0)(σ), so
mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(σ1 · · · σi) ≤ i−k ≤ n−k−1. Finally if σi = n+1, where k+1 ≤ i ≤ n−k,then

mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(red(σ1 · · · σi)) + mmp(0,0,k,0)(σi+1 · · · σn+1)

≤ i − k + (n + 1 − i − k) = n + 1 − 2k < n − k − 1.
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ursion
an+1,k = an,k + 2Ck−1. (19)In general, if n = k+1, then there are Ck+1−Ck permutations in Sn(132) avoiding MMP (0, 0, k, 0),namely, those that do not have σk+1 = k + 1. Using this as the base 
ase, we may solve re
ursion (19)to obtain an,k = Ck+1 − Ck + 2(n − k − 1)Ck−1. 2Again, we 
an easily use Mathemati
a to 
ompute some initial terms of the generating fun
tion

Q
(0,0,k,0)
132 (t, x) for small k. For example, we have 
omputed that

Q
(0,0,1,0)
132 (t, x) = 1 + t + (1 + x)t2 +

(

1 + 3x + x2
)

t3 +
(

1 + 6x + 6x2 + x3
)

t4 +
(

1 + 10x + 20x2 + 10x3 + x4
)

t5 +
(

1 + 15x + 50x2 + 50x3 + 15x4 + x5
)

t6 +
(

1 + 21x + 105x2 + 175x3 + 105x4 + 21x5 + x6
)

t7 +
(

1 + 28x + 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)

t8 +
(

1 + 36x + 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)

t9 + · · · .It is easy to explain several of the 
oe�
ients of Q
(0,0,1,0)
n,132 (x). That is, the following hold.Theorem 4.3 1. Q

(0,0,1,0)
n,132 (0) = 1 for n ≥ 1,2. Q

(0,0,1,0)
n,132 (x)|xn−1 = 1 for n ≥ 2,3. Q
(0,0,1,0)
n,132 (x)|x =

(

n
2

) for n ≥ 2, and4. Q
(0,0,1,0)
n,132 (x)|xn−2 =

(

n
2

) for n ≥ 3.Proof. It is easy to see that n(n−1) · · · 1 is the only permutation σ ∈ Sn(132) su
h that mmp(0,0,1,0)(σ) =

0. Thus, Q
(0,0,1,0)
n,132 (0) = 1 for all n ≥ 1. Similarly, for n ≥ 2, σ = 12 · · · (n−1)n is the only permutationin Sn(132) with mmp(0,0,1,0)(σ) = n − 1 so that Q

(0,0,1,0)
n,132 (x)|xn−1 = 1 for n ≥ 2.To prove (3), let σ(i,j) = n(n − 1) · · · (j + 1)(j − 1) · · · ij(i − 1) · · · 1 for any 1 ≤ i < j ≤ n. It iseasy to see that mmp(0,0,1,0)(σ(i,j)) = 1 and that these are the only permutations σ in Sn(132) su
hthat mmp(0,0,1,0)(σ) = 1. Thus, Q

(0,0,1,0)
n,132 (x)|x =

(

n
2

) for n ≥ 2.For (4), we prove by indu
tion that Q
(0,0,1,0)
n,132 (x)|xn−2 =

(

n
2

) for n ≥ 3. The theorem holds for n =

3, 4. Now suppose that n ≥ 5 and σ ∈ Sn(132) and mmp(0,0,1,0)(σ) = n−2. Then if σn = n, it must bethe 
ase that mmp(0,0,1,0)(σ1 · · · σn−1) = n−3, so by indu
tion we have (n−1
2

) 
hoi
es for σ1 · · · σn−1. If
σi = n, where 1 ≤ i ≤ n−1, then it must be the 
ase that σ = (n−k+1) · · · (n−1)n12 · · · (n−k), so thereare n− 1 su
h permutations where σn 6= n. Thus, we have a total of (n2) with mmp(0,0,1,0)(σ) = n− 2.

2More generally, one 
an observe that the 
oe�
ients of xj and xn−j−1 in Q
(0,0,1,0)
n,132 (x) are the same.This 
an be proved dire
tly from its generating fun
tion. That is, by Theorem 4.1,

Q
(0,0,1,0)
132 (t, x) =

1 + t(x − 1) −
√

(1 + t(x − 1))2 − 4xt

2xt
.
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R

(0,0,1,0)
132 (t, x) =

Q
(0,0,1,0)
132 (t, x) − 1

t
=

1 − t(x + 1) −
√

(1 + t(x − 1))2 − 4xt

2xt2
.The observed symmetry is then just the statement that R

(0,0,1,0)
132 (t, x) = R

(0,0,1,0)
132 (tx, 1/x), whi
h 
anbe easily 
he
ked. We shall give a 
ombinatorial proof of this symmetry in Se
tion 6; see the dis
ussionof (35).We have 
omputed that

Q
(0,0,2,0)
132 (t, x) = 1 + t + 2t2 + (3 + 2x)t3 +

(

5 + 7x + 2x2
)

t4 +
(

8 + 21x + 11x2 + 2x3
)

t5 +
(

13 + 53x + 49x2 + 15x3 + 2x4
)

)t6 +
(

21 + 124x + 174x2 + 89x3 + 19x4 + 2x5
)

t7 +
(

34 + 273x + 546x2 + 411x3 + 141x4 + 23x5 + 2x6
)

t8 +
(

55 + 577x + 1557x2 + 1635x3 + 804x4 + 205x5 + 27x6 + 2x7
)

t9 + · · · .We then have the following proposition.Proposition 4.4 1. Q
(0,0,2,0)
n,132 (0) = Fn, where Fn is the nth Fibona

i number, and2. Q

(0,0,2,0)
n,132 (x)|xn−3 = 3 + 4(n − 3).Proof. In this 
ase, we know that Q

(0,0,2,0)
132 (t, 0) = 1

1−t(C0+C1t) = 1
1−t−t2

, so (Q
(0,0,2,0)
n,132 (0))n≥0 is the se-quen
e of Fibona

i numbers. This result is known [5, Table 6.1℄, sin
e the avoidan
e of MMP (0, 0, 2, 0)is equivalent to the avoidan
e of the patterns 123 and 213 simultaneously, so in this 
ase we are dealingwith the multi-avoidan
e of the 
lassi
al patterns 132, 123, and 213.The fa
t that Q

(0,0,2,0)
n,132 (x)|xn−3 = 3 + 4(n − 3) is a spe
ial 
ase of Theorem 4.2. 2The sequen
e (Q

(0,0,2,0)
n,132 (x)|x)n≥3, whose initial terms are 2, 7, 21, 53, 124, 273, 577, . . ., does notappear in the OEIS.We have 
omputed that

Q
(0,0,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (9 + 5x)t4 +

(

18 + 19x + 5x2
)

t5 +
(

37 + 61x + 29x2 + 5x3
)

t6 +
(

73 + 188x + 124x2 + 39x3 + 5x4
)

t7 +

(146 + 523x + 500x2 + 207x3 + 49x4 + 5x5)t8 +

(293 + 1387x + 1795x2 + 1013x3 + 310x4 + 59x5 + 5x6)t9 + · · · .In this 
ase, the sequen
e (Q
(0,0,3,0)
n,132 (0))n≥0 whose generating fun
tion Q

(0,0,3,0)
132 (t, 0) = 1

1−t(1+t+2t2)is A077947 in the OEIS, whi
h also 
ounts the number of sequen
es of 
odewords of total length nfrom the 
ode C = {0, 10, 110, 111}. For example, for n = 3, there are �ve sequen
es of length 3that are in {0, 10, 110, 111}∗ , namely, 000,010,100,110, and 111. The basi
 idea of a 
ombinatorialexplanation of this fa
t is not that di�
ult to present. Indeed, a permutation avoiding the patterns132 and MMP (0, 0, 3, 0) is su
h that to the left of n, the largest element, one 
an either have noelements, one element (n − 1), two elements in in
reasing order (n − 2)(n − 1), or two elements in
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reasing order (n − 1)(n − 2). We 
an then re
ursively build the 
odeword 
orresponding to thepermutation beginning with, say, 0, 10, 110 and 111, respe
tively, 
orresponding to the four 
ases; onethen applies the same map to the subpermutation to the right of n.The sequen
e (Q
(0,0,3,0)
n,132 (x)|x)n≥4, whose initial terms are 5, 19, 61, 188, 532, 1387, . . . does not appearin the OEIS.We have 
omputed that

Q
(0,0,4,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (28 + 14x)t5 + (62 + 56x + 14x2)t6 +

(143 + 188x + 84x2 + 14x3)t7 + (331 + 603x + 307x2 + 112x3 + 14x4)t8 +

(738 + 1907x + 1455x2 + 608x3 + 140x4 + 14x5)t9 + · · · .Here, neither the sequen
e (Q
(0,0,4,0)
n,132 (0))n≥1, whose generating fun
tion is 1

1−t(1+t+2t2+5t3)
, nor thesequen
e (Q

(0,0,4,0)
n,132 (x)|x)n≥5 appear in the OEIS.Unlike the situation with the generating fun
tions Q

(k,0,0,0)
n,132 (t, x), there does not seem to be anysimple way to extra
t a simple formula for Q

(0,0,k,0)
n,132 (t, x)|x from (17).5 The fun
tions Q

(0,k,0,0)
132 (t, x) = Q

(0,0,0,k)
132 (t, x)In this se
tion, we shall 
ompute the generating fun
tions Q

(0,k,0,0)
132 (t, x) and Q

(0,0,0,k)
132 (t, x) for k ≥

1. These two generating fun
tions are equal, sin
e it follows from Lemma 1.1 that Q
(0,k,0,0)
n,132 (x) =

Q
(0,0,0,k)
n,132 (x) for all k, n ≥ 1. Thus, in this se
tion, we shall only 
onsider the generating fun
tions

Q
(0,k,0,0)
132 (t, x).First let k = 1. It is easy to see that Ai(σ) will 
ontribute mmp(0,1,0,0)(red(Ai(σ))) to mmp(0,1,0,0)(σ),sin
e neither n nor any of the elements to the right of n have any e�e
t on whether an element in Ai(σ)mat
hes the pattern MMP (0, 1, 0, 0) in σ. Similarly, Bi(σ) will 
ontribute n − i to mmp(0,1,0,0)(σ),sin
e the presen
e of n to the left of these elements guarantees that they all mat
h the pattern

MMP (0, 1, 0, 0) in σ. Note that n does not mat
h the pattern MMP (0, 1, 0, 0) in σ. It followsthat
Q

(0,1,0,0)
n,132 (x) =

n
∑

i=1

Q
(0,1,0,0)
i−1,132 (x)Cn−ix

n−i. (20)Multiplying both sides of (20) by tn and summing for n ≥ 1 will show that
−1 + Q

(0,1,0,0)
132 (t, x) = tQ

(0,1,0,0)
132 (t, x) C(tx).Thus,

Q
(0,1,0,0)
132 (t, x) =

1

1 − tC(tx)
,whi
h is the same as the generating fun
tion for Q

(1,0,0,0)
132 (t, x).Next we 
onsider the 
ase k > 1. Again, 
learly Ai(σ) will 
ontribute mmp(0,k,0,0)(red(Ai(σ))) to

mmp(0,k,0,0)(σ), sin
e neither n nor any of the elements to the right of n have any e�e
t on whether an
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hes the pattern MMP (0, k, 0, 0) in σ. Now if i ≥ k, then Bi(σ) will 
ontribute
Cn−ix

n−i to mmp(0,k,0,0)(σ), sin
e the presen
e of n and the elements of Ai(σ) guarantee that theelements of Bi(σ) all mat
h the pattern MMP (0, k, 0, 0) in σ. However, if i < k, then Bi(σ) will
ontribute mmp(0,k−i,0,0)(red(Bi(σ))) to mmp(0,k,0,0)(σ), sin
e the presen
e of n and the elements of
Ai(σ) to the left of n guarantees that the elements of Bi(σ) mat
h the pattern MMP (0, k, 0, 0) in σif and only if they mat
h the pattern MMP (0, k − i, 0, 0) in Bi(σ). Note that n does not mat
h thepattern MMP (0, k, 0, 0) for any k ≥ 1. It follows that

Q
(0,k,0,0)
n,132 (x) =

k−1
∑

i=1

Q
(0,k,0,0)
i−1,132 (x)Q

(0,k−i,0,0)
n−i,132 (x) +

n
∑

i=k

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i

=
k−1
∑

i=1

Ci−1Q
(0,k−i,0,0)
n−i,132 (x) +

n
∑

i=k

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i. (21)Here the last equation follows from the fa
t that Q
(0,k,0,0)
i−1,132 (x) = Ci−1 if i ≤ k − 1. Multiplying bothsides of (21) by tn and summing for n ≥ 1 will show that

− 1 + Q
(0,k,0,0)
132 (t, x) =

t
k−1
∑

i=1

Ci−1t
i−1Q

(0,k−i,0,0)
132 (t, x) + tC(tx)(Q

(0,k,0,0)
132 (t, x) − (C0 + C1t + · · · + Ck−2t

k−2)).Thus, we have the following theorem.Theorem 5.1
Q

(0,1,0,0)
132 (t, x) =

1

1 − tC(tx)
. (22)For k > 1,

Q
(0,k,0,0)
132 (t, x) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, x) − C(tx))

1 − tC(tx)
(23)and

Q
(0,k,0,0)
132 (t, 0) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, 0) − 1)

1 − t
. (24)
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it formulas for Q
(0,k,0,0)
n,132 (x)|xrNote that Theorem 5.1 gives us a simple re
ursion for the generating fun
tions for the 
onstant termsin Q

(0,k,0,0)
n,132 (x). For example, one 
an 
ompute that

Q
(0,1,0,0)
132 (t, 0) =

1

(1 − t)
;

Q
(0,2,0,0)
132 (t, 0) =

1 − t + t2

(1 − t)2
;

Q
(0,3,0,0)
132 (t, 0) =

1 − 2t + 2t2 + t3 − t4

(1 − t)3
;

Q
(0,4,0,0)
132 (t, 0) =

1 − 3t + 4t2 − t3 + 3t4 − 5t5 + 2t6

(1 − t)4
, and

Q
(0,5,0,0)
132 (t, 0) =

1 − 4t + 7t2 − 5t3 + 4t4 + 6t5 − 21t6 + 18t7 − 5t8

(1 − t)5
.We 
an explain the highest 
oe�
ient of x and the se
ond highest 
oe�
ient of x in Q

(0,k,0,0)
n,132 (x)for any k ≥ 1.Theorem 5.2 1. For all k ≥ 1 and n ≥ k, the highest power of x that o

urs in Q

(0,k,0,0)
n,132 (x) is

xn−k, with Q
(0,k,0,0)
n,132 (x)|xn−k = CkCn−k.2. For all k ≥ 1 and n ≥ k + 1, Q

(0,k,0,0)
n,132 (x)|xn−k−1 = akCn−k where a1 = 1 and for k ≥ 2,

ak = Ck +
∑k−1

i=1 Ci−1ak−i.Proof. For (1), it is easy to see that to obtain the largest number of MMP (0, k, 0, 0)-mat
hes for apermutation σ ∈ Sn(132), we need only to arrange the largest k elements n, n − 1, . . . , n − k + 1 su
hthat they avoid 132, followed by the elements 1, . . . , n−k under the same 
ondition. Thus, the highestpower of x that o

urs in Q
(0,k,0,0)
n,132 (x) is xn−k, and its 
oe�
ient is CkCn−k.For (2), we know that Q
(0,1,0,0)
n,132 (x) = Q

(1,0,0,0)
n,132 (x) and we have proved that Q

(1,0,0,0)
n,132 (x)|xn−2 = Cn−1for n ≥ 2. Thus a1 = 1.Next assume by indu
tion that for j = 1, . . . , k − 1,

Q
(j,0,0,0)
n,132 (x)|xn−j−1 = ajCn−j for n ≥ j + 1where aj is a positive integer. Then by the re
ursion (21), we know that

Q
(0,k,0,0)
n,132 (x)|xn−k−1 =

k−1
∑

i=1

Ci−1Q
(0,k−i,0,0)
n−i,132 (x)|xn−k−1 +

n
∑

i=k

(

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i
)

|xn−k−1

=

k−1
∑

i=1

Ci−1Q
(0,k−i,0,0)
n−i,132 (x)|xn−k−1 +

n
∑

i=k

Cn−iQ
(0,k,0,0)
i−1,132 (x)|xi−k−1 .
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tion, we know that for i = 1, . . . , k − 1,
Q

(0,k−i,0,0)
n−i,132 (x)|xn−k−1 = ak−iCn−k for n − i ≥ k − i + 1and for i = k + 1, . . . , n,

Q
(0,k,0,0)
i−1,132 (x)|xi−k−1 = CkCi−1−k for i − 1 ≥ k.Moreover, it is 
lear that for i = k, Q

(0,k,0,0)
k−1,132(x)|xk−k−1 = 0. Thus we have that for all n ≥ k + 1,

Q
(0,k,0,0)
n,132 (x)|xn−k−1 =

k−1
∑

i=1

Ci−1ak−iCn−k +

n
∑

i=k+1

Cn−iCkCi−1−k

= Cn−k

(

k−1
∑

i=1

Ci−1ak−i

)

+ Ck

n
∑

i=k+1

Cn−iCi−1−k

= Cn−k

(

k−1
∑

i=1

Ci−1ak−i

)

+ CkCn−k = Cn−k

(

Ck +
k−1
∑

i=1

Ci−1ak−i

)

.Thus for n ≥ k + 1, Q
(0,k,0,0)
n,132 (x)|xn−k−1 = akCn−k where ak = Ck +

∑k−1
i=1 Ci−1ak−i. 2For example,

a2 = C2 + C0a1 = 2 + 1 = 3,

a3 = C3 + C0a2 + C1a1 = 5 + 3 + 1 = 9, and
a4 = C4 + C0a3 + C1a2 + C2a1 = 14 + 9 + 3 + 2 = 28whi
h agrees with the series for Q

(0,2,0,0)
132 (t, x), Q

(0,3,0,0)
132 (t, x), and Q

(0,4,0,0)
132 (t, x) whi
h we give below.Again we 
an use Mathemati
a to 
ompute the �rst few terms of Q

(0,k,0,0)
132 (t, x) for small k. Sin
e

Q
(0,1,0,0)
132 (t, x) = Q

(1,0,0,0)
132 (t, x), we will not list that generating fun
tion again.We have 
omputed that

Q
(0,2,0,0)
132 (t, x) = 1 + t + 2t2 + (3 + 2x)t3 +

(

4 + 6x + 4x2
)

t4 +
(

5 + 12x + 15x2 + 10x3
)

t5 +
(

6 + 20x + 36x2 + 42x3 + 28x4
)

t6 +
(

7 + 30x + 70x2 + 112x3 + 126x4 + 84x5
)

t7 +
(

8 + 42x + 120x2 + 240x3 + 360x4 + 396x5 + 264x6
)

t8 +
(

9 + 56x + 189x2 + 450x3 + 825x4 + 1188x5 + 1287x6 + 858x7
)

t9 + · · · .The only permutations σ ∈ Sn(132) su
h that mmp(0,2,0,0)(σ) = 0 are the identity permutationplus all the adja
ent transpositions
(i, i + 1) = 12 · · · (i − 1)(i + 1)i(i + 2) · · · n,whi
h explains why Q

(0,2,0,0)
n,132 (0) = n for all n ≥ 1. This is a known result [5, Table 6.1℄, sin
e avoiding

MMP (0, 2, 0, 0) is equivalent to avoiding simultaneously the 
lassi
al patterns 321 and 231. Hen
e inthis 
ase, we are dealing with the simultaneous avoidan
e of the patterns 132, 321 and 231.
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laim that (Q
(0,2,0,0)
n,132 (x)|x = (n − 1)(n − 2) for all n ≥ 3. This 
an be easily proved byindu
tion. That is, Q
(0,2,0,0)
3,132 (x)|x = 2, so our formula holds for n = 3. Now suppose that n ≥ 4 and

σ = σ1 · · · σn ∈ Sn(132) is su
h that mmp(0,2,0,0)(σ) = 1. We 
laim there are only three possibilitiesfor the position of n in σ. That is, it 
annot be that σi = n for 2 ≤ i ≤ n − 2, sin
e then both σn and
σn−1 would mat
h MMP (0, 2, 0, 0) in σ. Thus, it must be the 
ase that σn = n, σn−1 = n, or σ1 = n.Clearly, if σn = n, then we must have that mmp(0,2,0,0)(σ1 · · · σn−1) = 1, so there are (n − 2)(n − 3)
hoi
es of σ1 · · · σn−1 by indu
tion. If σn−1 = n, then σn = 1, so σn will mat
h MMP (0, 2, 0, 0) in σ.Thus, it must be the 
ase that mmp(0,2,0,0)(red(σ1 · · · σn−2)) = 0, whi
h means that we have n−2 
hoi
esfor σ1 · · · σn−2 in this 
ase. Finally, if σ1 = n, then we must have that mmp(0,1,0,0)(red(σ2 · · · σn)) = 1.Using the fa
t that Q

(0,1,0,0)
132 (t, x) = Q

(1,0,0,0)
132 (t, x) and that Q

(1,0,0,0)
n,132 (x)|x = n− 1, it follows that thereare n − 2 
hoi
es for σ2 · · · σn in this 
ase. Thus, it follows that

Q
(0,2,0,0)
n,132 (x)|x = (n − 2)(n − 3) + 2(n − 2) = (n − 1)(n − 2).The sequen
e (Q

(0,2,0,0)
n,132 (x)|xn−3)n≥3 is sequen
e A120589 in the OEIS whi
h has no listed 
ombi-natorial interpretation so that we have give a 
ombinatorial interpretation to this sequen
e.We have 
omputed that

Q
(0,3,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (9 + 5x)t4 +

(

14 + 18x + 10x2)
)

t5+
(

20 + 42x + 45x2 + 25x3
)

t6 +
(

27 + 80x + 126x2 + 126x3 + 70x4
)

t7+
(

35 + 135x + 280x2 + 392x3 + 378x4 + 210x5
)

t8+
(

44 + 210x + 540x2 + 960x3 + 1260x4 + 1088x5 + 660x6
)

t9 + · · ·and
Q

(0,4,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (28 + 14x)t5 +

(

48 + 56x + 28x2
)

t6+
(

75 + 144x + 140x2 + 70x3
)

t7 +
(

110 + 300x + 432x2 + 392x3 + 196x4
)

t8+
(

154 + 550x + 1050x2 + 1344x3 + 1176x4 + 588x5
)

t9 + · · · .The sequen
es (Q
(0,3,0,0)
n,132 (0))n≥1, (Q

(0,3,0,0)
n,132 (x)|x)n≥4, (Q

(0,4,0,0)
n,132 (0))n≥1, and

(Q
(0,4,0,0)
n,132 (x)|x)n≥5 do not appear in the OEIS.We have now 
onsidered all the possibilities for Q

(a,b,c,d)
132 (t, x) for a, b, c, d ∈ N where all but one ofthe parameters a, b, c, d are zero. There are several alternatives for further study. One is to 
onsider

Q
(a,b,c,d)
132 (t, x) for a, b, c, d ∈ N where at least two of the parameters a, b, c, d are non-zero. This will bethe subje
t of [7, 8℄. A se
ond alternative is to allow some of the parameters to be equal to ∅. In thenext two se
tions, we shall give two simple examples of this type of alternative.6 The fun
tion Q

(k,0,∅,0)
132 (t, x)In this se
tion, we shall 
onsider the generating fun
tion Q

(k,0,∅,0)
132 (t, x), where k ∈ N ∪ {∅}. Given apermutation σ = σ1 · · · σn ∈ Sn, we say that σj is a right-to-left maximum (left-to-right minimum) of
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σ if σj > σi for all i > j (σj < σi for all i < j). We let RLmax(σ) denote the number of right-to-leftmaxima of σ and LRmin(σ) denote the number of left-to-right minima of σ. One 
an view the pattern
MMP (k, 0, ∅, 0) as a generalization of the number of left-to-right minima statisti
 (whi
h 
orrespondsto the 
ase k = 0).First we 
ompute the generating fun
tion for Q

(∅,0,∅,0)
n,132 (x), whi
h 
orresponds to the elements thatare both left-to-right minima and right-to-left maxima. Consider the permutations σ ∈ Sn(132) where

σ1 = n. Clearly su
h permutations 
ontribute xQ
(∅,0,∅,0)
n−1,132(x) to Q

(∅,0,∅,0)
n,132 (x). For i > 1, it is easy tosee that Ai(σ) will 
ontribute nothing to mmp(∅,0,∅,0)(σ), sin
e the presen
e of n to the right of theseelements ensures that no point in Ai(σ) mat
hes the pattern MMP (∅, 0, ∅, 0). Similarly, Bi(σ) will
ontribute mmp(∅,0,∅,0)(red(Bi(σ))) to mmp(∅,0,∅,0)(σ), sin
e neither n nor any of the elements to theleft of n have any e�e
t on whether an element in Bi(σ) mat
hes the pattern MMP (∅, 0, ∅, 0) in σ.Thus,

Q
(∅,0,∅,0)
n,132 (x) = xQ

(∅,0,∅,0)
n−1,132(x) +

n
∑

i=2

Ci−1Q
(∅,0,∅,0)
n−i,132 (x). (25)Multiplying both sides of (25) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(∅,0,∅,0)
132 (t, x) = txQ

(∅,0,∅,0)
132 (t, x) + tQ

(∅,0,∅,0)
132 (t, x) (C(t) − 1).Thus, we have the following theorem.Theorem 6.1

Q
(∅,0,∅,0)
132 (t, x) =

1

1 − tx + t − tC(t)
(26)and

Q
(∅,0,∅,0)
132 (t, 0) =

1

1 + t − tC(t)
. (27)Next we 
ompute the generating fun
tion for Q

(0,0,∅,0)
n,132 (x). First 
onsider the permutations σ ∈

S
(1)
n (132). Clearly su
h permutations 
ontribute xQ

(0,0,∅,0)
n−1,132(x) to Q

(0,0,∅,0)
n,132 (x). For i > 1, it is easy tosee that Ai(σ) will 
ontribute mmp(0,0,∅,0)(red(Ai(σ))) to mmp(0,0,∅,0)(σ), sin
e neither n nor any ofthe elements to the right of n have any e�e
t on whether an element in Ai(σ) mat
hes the pattern

MMP (0, 0, ∅, 0) in σ. Similarly, Bi(σ) will 
ontribute mmp(0,0,∅,0)(red(Bi(σ))) to mmp(0,0,∅,0)(σ),sin
e neither n nor any of the elements to the left of n have any e�e
t on whether an element in Bi(σ)mat
hes the pattern MMP (0, 0, ∅, 0) in σ. Thus,
Q

(0,0,∅,0)
n,132 (x) = xQ

(0,0,∅,0)
n−1,132(x) +

n
∑

i=2

Q
(0,0,∅,0)
i−1,132 (x)Q

(0,0,∅,0)
n−i,132 (x). (28)Multiplying both sides of (28) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(0,0,∅,0)
132 (t, x) = txQ

(0,0,∅,0)
132 (t, x) + tQ

(0,0,∅,0)
132 (t, x) (Q

(0,0,∅,0)
132 (t, x) − 1),so

0 = 1 + Q
(0,0,∅,0)
132 (t, x)(tx − t − 1) + t(Q

(0,0,∅,0)
132 (t, x))2.
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Q

(0,0,∅,0)
132 (t, x) =

(1 + t − tx) −
√

(1 + t − tx)2 − 4t

2t
.Next we 
ompute a re
ursion for Q

(k,0,∅,0)
n,132 (x), where k ≥ 1. It is 
lear that n 
an never mat
hthe pattern MMP (k, 0, ∅, 0) for k ≥ 1 in any σ ∈ Sn(132). For i ≥ 1, it is easy to see that Ai(σ)will 
ontribute mmp(k−1,0,∅,0)(red(Ai(σ))) to mmp(k,0,∅,0)(σ), sin
e none of the elements to the rightof n have any e�e
t on whether an element in Ai(σ) mat
hes the pattern MMP (k, 0, ∅, 0) in σ andthe presen
e of n ensures that an element in Ai(σ) mat
hes MMP (k, 0, ∅, 0) in σ if and only if itmat
hes MMP (k − 1, 0, ∅, 0) in Ai(σ). Similarly, Bi(σ) will 
ontribute mmp(k,0,∅,0)(red(Bi(σ))) to

mmp(k,0,∅,0)(σ), sin
e neither n nor any of the elements to the left of n have any e�e
t on whether anelement in Bi(σ) mat
hes the pattern MMP (k, 0, ∅, 0) in σ. Thus,
Q

(k,0,∅,0)
n,132 (x) =

n
∑

i=1

Q
(k−1,0,∅,0)
i−1,132 (x)Q

(k,0,∅,0)
n−i,132 (x). (29)Multiplying both sides of (29) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(0,0,∅,0)
132 (t, x) = tQ

(k−1,0,∅,0)
132 (t, x) Q

(k,0,∅,0)
132 (t, x).Thus, we have the following theorem.Theorem 6.2

Q
(0,0,∅,0)
132 (t, x) =

(1 + t − tx) −
√

(1 + t − tx)2 − 4t

2t
. (30)For k ≥ 1,

Q
(k,0,∅,0)
132 (t, x) =

1

1 − tQ
(k−1,0,∅,0)
132 (t, x)

. (31)Thus,
Q

(0,0,∅,0)
132 (t, 0) = 1and for k ≥ 1,

Q
(k,0,∅,0)
132 (t, 0) =

1

1 − tQ
(k−1,0,∅,0)
132 (t, 0)

. (32)6.1 Expli
it formulas for Q
(k,0,∅,0)
n,132 (x)|xrWe have 
omputed that

Q
(∅,0,∅,0)
132 (t, x) = 1 + xt +

(

1 + x2
)

t2 +
(

2 + 2x + x3
)

t3 +
(

6 + 4x + 3x2 + x4
)

t4 +
(

18 + 13x + 6x2 + 4x3 + x5
)

t5 +
(

57 + 40x + 21x2 + 8x3 + 5x4 + x6
)

t6 +
(

186 + 130x + 66x2 + 30x3 + 10x4 + 6x5 + x7
)

t7 +
(

622 + 432x + 220x2 + 96x3 + 40x4 + 12x5 + 7x6 + x8
)

t8 +
(

2120 + 1466x + 744x2 + 328x3 + 130x4 + 51x5 + 14x6 + 8x7 + x9
)

t9 + · · · .
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(∅,0,∅,0)
n,132 (x) is xn, whi
h 
omes from the permutation n(n −

1) · · · 21. It is easy to see that Q
(∅,0,∅,0)
n,132 (x)|xn−1 = 0. That is, suppose σ = σ1 · · · σn ∈ Sn(132) and

mmp(∅,0,∅,0)(σ) = n−1. It 
an not be the 
ase that σi = n, where i ≥ 2, sin
e in su
h a situation, none of
σ1, . . . , σi would mat
h MMP (∅, 0, ∅, 0) in σ. Thus, it must be the 
ase that σ1 = n. But then it mustbe that 
ase that mmp(∅,0,∅,0)(σ2 · · · σn) = n−1, whi
h would mean that σ2 · · · σn = (n−1)(n−2) · · · 21.But then σ = n(n − 1) · · · 21 and mmp(∅,0,∅,0)(σ) = n, whi
h 
ontra
ts our 
hoi
e of σ. Thus, there
an be no su
h σ. Similarly, the 
oe�
ient of xn−2 in Q

(∅,0,∅,0)
n,132 (x) is n − 1, whi
h 
omes from thepermutations n(n − 1) · · · (i + 2)i(i + 1)(i − 1) · · · 21 for i = 1, . . . , n − 1.The sequen
e (Q

(∅,0,∅,0)
n,132 (0))n≥1 is the Fine numbers (A000957 in the OEIS). The Fine numbers

(Fn)n≥0 
an be de�ned by the generating fun
tion
F(t) =

∑

n≥0

Fntn =
1 −

√
1 − 4t

3t −
√

1 − 4t
.It is straightforward to verify that

1 −
√

1 − 4t

3t −
√

1 − 4t
· 1 +

√
1 − 4t

1 +
√

1 − 4t
=

1

1 + t − tC(t)
.

Fn 
ounts the number of 2-Motzkin paths with no level steps at height 0; see [2, 3℄. Here, a Motzkinpath is a latti
e path starting at (0, 0) and ending at (n, 0) that is formed by three types of steps,up-steps (1, 1), level steps (1, 0), and down steps (1,−1), and never goes below the x-axis. A c-Motzkinpath is a Motzkin path where the level steps 
an be 
olored with any of c 
olors. Fn also 
ounts thenumber of ordered rooted trees with n edges that have root of even degree.Problem 3 Find simple bije
tive proofs of the fa
ts that the number of σ ∈ Sn(132) su
h that
mmp(∅,0,∅,0)(σ) = 0 equals the number of 2-Motzkin paths with no level steps at height 0 and that thenumber of σ ∈ Sn(132) su
h that mmp(∅,0,∅,0)(σ) = 0 equals the number of ordered rooted trees with
n-edges that have root of even degree.The sequen
e (Q

(∅,0,∅,0)
n,132 (x)|x)n≥1 is sequen
e A065601 in the OEIS, whi
h 
ounts the number ofDy
k paths of length 2n with exa
tly one hill. A hill in a Dy
k path is an up-step that starts on the

x-axis and that is immediately followed by a down-step.Next we 
onsider the 
onstant term and the 
oe�
ient of x in Q
(k,0,∅,0)
n,132 (x) for k ≥ 1.Proposition 6.3 For all k ≥ 1,

Q
(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0).Proof. Note that Q

(1,0,∅,0)
132 (t, 0) = 1

1−t
= Q

(1,0,0,0)
132 (t, 0). If we 
ompare the re
ursions (32) and (8), wesee that we have that Q

(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0) for all k ≥ 1. This fa
t is easy to see dire
tly.That is, suppose that σ ∈ Sn(132) has a MMP (k, 0, 0, 0)-mat
h. Then it is easy to see that if i isthe smallest t su
h that σt mat
hes MMP (k, 0, 0, 0) in σ, then there 
an be no j < i with σj < σibe
ause otherwise, σj would mat
h MMP (k, 0, 0, 0). That is, σi is also a MMP (k, 0, ∅, 0)-mat
h.
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h, then it also has a MMP (k, 0, ∅, 0)-mat
h. The 
onverse ofthis statement is trivial. Hen
e the number of σ ∈ Sn(132) with no MMP (k, 0, 0, 0)-mat
hes equalsthe number of σ ∈ Sn(132) with no MMP (k, 0, ∅, 0)-mat
hes. 2The re
ursion (31) has the same form as the re
ursion (6). Thus, we 
an use the same method ofproof that we did to establish the re
ursion (11) to prove that
Q

(k,0,∅,0)
132 (t, x)|x = Q

(k−1,0,∅,0)
132 (t, x)|x

t d
dt

Q
(k,0,∅,0)
132 (t, 0)

d
dt

tQ
(k−1,0,∅,0)
132 (t, 0)

. (33)For example, we know that
Q

(1,0,∅,0)
132 (t, x)|x = Q

(0,0,1,0)
132 (t, x)|x =

∑

n≥2

(

n

2

)

tn =
t2

(1 − t)3
. (34)Sin
e Q

(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0) for all k ≥ 1, one 
an use (33) and Mathemati
a to show that

Q
(2,0,∅,0)
132 (t, x)|x =

t3

(1 − t)(1 − 2t)2
,

Q
(3,0,∅,0)
132 (t, x)|x =

t4

(1 − t)(1 − 3t + t2)2
,

Q
(4,0,∅,0)
132 (t, x)|x =

t5

(1 − t)3(1 − 3t)2
, and

Q
(5,0,∅,0)
132 (t, x)|x =

t6

(1 − t)(1 − 5t + 6t2 − t3)2
.We also have the following proposition 
on
erning the 
oe�
ient of the highest power of x in

Q
(k,0,∅,0)
n,132 (x).Proposition 6.4 For all k ≥ 1, the highest power of x appearing in Q

(k,0,∅,0)
n,132 (x) is xn−k, and for all

n ≥ k, Q
(k,0,∅,0)
n,132 (x)|xn−k = 1.Proof. It is easy to see that for any k ≥ 1, the permutation σ ∈ Sn(132) with the maximal number of

MMP (k, 0, ∅, 0)-mat
hes for n ≥ k + 1, will be of the form (n− k)(n− k− 1) · · · 21(n− k + 1)(n− k +

2) · · · n. Thus, the highest power of x that o

urs in Q
(k,0,∅,0)
n,132 (x)is xn−k whi
h appears with 
oe�
ient1. 2Using Theorem 6.2, one 
an 
ompute that

Q
(0,0,∅,0)
132 (t, x) = 1 + xt + x(1 + x)t2 + x

(

1 + 3x + x2
)

t3 + x
(

1 + 6x + 6x2 + x3
)

t4 +
(

1 + 10x + 20x2 + 10x3 + x4
)

t5 + x
(

1 + 15x + 50x2 + 50x3 + 15x4 + x5
)

t6 +

x
(

1 + 21x + 105x2 + 175x3 + 105x4 + 21x5 + x6
)

t7 +

x
(

1 + 28x + 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)

t8 +

x
(

1 + 36x + 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)

t9 + · · · .
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ompare Q
(0,0,∅,0)
132 (t, x) to Q

(0,0,1,0)
132 (t, x), we see that for n ≥ 1,
Q

(0,0,∅,0)
n,132 (x) = xQ

(0,0,1,0)
n,132 (x). (35)Note the Q

(0,0,∅,0)
n,132 (x) has an obvious symmetry property. That is, the following holds.Theorem 6.5 For all n ≥ 1,

xn+1Q
(0,0,∅,0)
n,132

(

1

x

)

= Q
(0,0,∅,0)
n,132 (x).Proof. For σ ∈ Sn, de�ne the statisti
 non-LRmin(σ) = n−LRmin(σ). Sin
e the statisti
 mmp(0,0,∅,0)is the same as the LRmin statisti
 and the statisti
 mmp(0,0,1,0) is the same as the non-LRmin statisti
,Theorem 6.5 shows that the statisti
s LRmin and 1 + non-LRmin are equidistributed on 132-avoidingpermutations. In fa
t, it proves a more general 
laim, namely that on Sn(132), the joint distribution ofthe pair (mmp(0,0,∅,0)−1,mmp(0,0,1,0)) is the same as the distribution of (mmp(0,0,1,0),mmp(0,0,∅,0)−1),whi
h often is not the 
ase but is here be
ause the sum mmp(0,0,∅,0)(σ) + mmp(0,0,1,0)(σ) equals thelength of the permutation σ. That is, if we let

Rn(x, y) =
∑

σ∈Sn(132)

xmmp(0,0,∅,0)(σ)ymmp(0,0,1,0)(σ), (36)then the theorem shows that yRn(x, y) is symmetri
 in x and y for all n.We shall sket
h a 
ombinatorial proof of this fa
t. First we 
onstru
t a bije
tion T from Sn(132)onto Sn(123) that will make the fa
t that yRn(x, y) is symmetri
 apparent. If σ = σ1 · · · σk ∈ Sk and
τ = τ1 · · · τℓ ∈ Sℓ, then we let

σ ⊕ τ = σ1 · · · σk(k + τ1) · · · (k + τℓ)and
σ ⊖ τ = (ℓ + σ1) · · · (ℓ + σk)τ1 · · · τℓ.Then ⋃n Sn(132) is re
ursively generated by starting with the permutation 1 and 
losing under theoperations of σ ⊖ τ and σ ⊕ 1. Then we 
an de�ne a re
ursive bije
tion T :

⋃

n Sn(132) → ⋃

n Sn(123)by letting T (1) = 1, T (σ ⊖ τ) = T (σ) ⊖ T (τ), and T (σ ⊕ 1) = X(T (σ)), where X(σ) is 
onstru
tedfrom σ as follows.Take the permutation σ ∈ Sn(123) and �x the positions and values of the left-to-right minima. Ap-pend one position to the end of σ, and renumber the non-left-to-right minima in de
reasing order. Forexample, if σ = 4762531, then 4, 2, and 1 are the left-to-right minima. After �xing those positions andvalues and appending one position, the permutation looks like 4xx2xx1x. Then we �ll in the xs with8, 7, 6, 5, 3, in that order, to obtain 48726513. The map X is essentially based on the Simion-S
hmidtbije
tion des
ribed in [5, Chapter 4℄.It is straightforward to prove by indu
tion that if T (σ) = τ , then σj mat
hes the pattern MMP (0, 0, ∅, 0)
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hes the pattern MMP (0, 0, ∅, 0) in τ . That is, the map T preserves left-to-right minima. Note that if σj does not mat
h the pattern MMP (0, 0, ∅, 0) in σ, then it must mat
hthe pattern MMP (0, 0, 1, 0) in σ. Thus, it follows that
Rn(x, y) =

∑

σ∈Sn(132)

xmmp(0,0,∅,0)(σ)ymmp(0,0,1,0)(σ)

=
∑

σ∈Sn(123)

xLRmin(σ)ynon-LRmin(σ).Next observe that spe
ifying the left-to-right minima of a permutation σ ∈ Sn(123) 
ompletelydetermines σ. That is, if σi1 > σi2 > · · · > σik are the left-to-right minima of σ, where 1 = i1 <
i2 < · · · < ik ≤ n, then the remaining elements must be pla
ed in de
reasing order, as in the map X,sin
e any pair that are not de
reasing will form a 123-pattern with a previous left-to-right minimum.This means that X : Sn(123) → Sn+1(123) is one-to-one, and sin
e LRmin(X(σ)) = LRmin(σ) andnon-LRmin(X(σ)) = 1 + non-LRmin(σ), it follows that

yRn(x, y) =
∑

σ∈Sn(123)

xLRmin(X(σ))ynon-LRmin(X(σ)).But it is easy to see that for any permutation X(σ), reversing and then 
omplementing X(σ), whi
hrotates the graph of X(σ) by 180◦ around its 
enter, produ
es a permutation of the form X(τ) for some
τ ∈ Sn(123) su
h that LRmin(X(σ)) = non-LRmin(X(τ)) and non-LRmin(X(σ)) = LRmin(X(τ)).Thus,

∑

σ∈Sn(123)

xLRmin(X(σ))ynon-LRmin(X(σ))is symmetri
 in x and y. Hen
e, yRn(x, y) is symmetri
 in x and y. Thus, if r and c are the reverseand 
omplement maps, respe
tively, then Y : Sn(132) → Sn(132) given by Y (σ) = T−1X−1rcXT (σ)is a bije
tion that swaps the statisti
s mmp(0, 0, ∅, 0) − 1 and mmp(0, 0, 1, 0). 2We have 
omputed that
Q

(1,0,∅,0)
132 (t, x) = 1 + t + (1 + x)t2 +

(

1 + 3x + x2
)

t3 +
(

1 + 6x + 6x2 + x3
)

t4 +
(

1 + 10x + 20x2 + 10x3 + x4
)

t5 +
(

1 + 15x + 50x2 + 50x3 + 15x4 + x5
)

t6 +
(

1 + 21x + 105x2 + 175x3 + 105x4 + 21x5 + x6
)

t7 +
(

1 + 28x + 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)

t8 +
(

1 + 36x + 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)

t9 + · · · .One 
an observe that Q
(1,0,∅,0)
132 (t, x) = Q

(0,0,1,0)
132 (t, x). We provide here a 
ombinatorial proof of thisfa
t. A
tually, we will prove a stronger statement that we re
ord as the following theorem.Theorem 6.6 The two pairs of statisti
s (MMP (1, 0, ∅, 0),MMP (0, 0, 1, 0)) and

(MMP (0, 0, 1, 0),MMP (1, 0, ∅, 0)) have the same joint distributions on Sn(132).
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onstru
t a map ϕ on ∪nSn(132), re
ursively inter
hanging o

urren
es of the involvedpatterns. The base 
ase, n = 1, obviously holds: ϕ(1) := 1 and neither of the patterns o

ur in 1.Assume that the 
laim holds for 132-avoiding permutations of length less than n, and 
onsider apermutation σ ∈ S
(i)
n for some i. Consider two 
ases.Case 1. i = 1. In this 
ase, we 
an de�ne ϕ(π) := nϕ(Bi(σ)). Sin
e n is neither an o

urren
e of

MMP (1, 0, ∅, 0) nor an o

urren
e of MMP (0, 0, 1, 0), we get the desired property by the indu
tionhypothesis.Case 2. i > 1. Note that n is an o

urren
e of the pattern MMP (0, 0, 1, 0), and be
ause of n, ea
hleft-to-right minimum in Ai(σ) is a
tually an o

urren
e of the pattern MMP (1, 0, ∅, 0). Further, ea
hnon-left-to-right minimum in Ai(σ) is obviously an o

urren
e of the pattern MMP (0, 0, 1, 0). If i = n,we let ϕ(σ) := Y (red(Ai(σ)))⊕1, where Y is as de�ned in the proof of Theorem 6.5, and for 1 < i < n,we let ϕ(σ) := (Y (red(Ai(σ))) ⊕ 1) ⊖ ϕ(Bi(σ)). Indeed, ϕ(Bi(σ)) will inter
hange the o

urren
es ofthe patterns by the indu
tion hypothesis. Also, as in the proof of Theorem 6.5, Y (red(Ai(σ)))⊕ 1 willex
hange the number of o

urren
es of the patterns in Ai(σ)n. 2We have 
omputed that
Q

(2,0,∅,0)
132 (t, x) = 1 + t + 2t2 + (4 + x)t3 +

(

8 + 5x + x2
)

t4+
(

16 + 17x + 8x2 + x3
)

t5 +
(

32 + 49x + 38x2 + 12x3 + x4
)

t6+
(

64 + 129x + 141x2 + 77x3 + 17x4 + x5
)

t7+
(

128 + 321x + 453x2 + 361x3 + 143x4 + 23x5 + x6
)

t8+
(

256 + 769x + 1326x2 + 1399x3 + 834x4 + 247x5 + 30x6 + x7
)

t9 + · · · .The sequen
e (Q
(2,0,∅,0)
n,132 (x)|x)n≥2 is sequen
e A000337 in the OEIS, whose nth term is

(n − 1)2n + 1. Thus, Q
(2,0,∅,0)
n,132 (x)|x = (n − 3)2n−2 + 1 for n ≥ 2.We have 
omputed that

Q
(3,0,∅,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (13 + x)t4 +

(

34 + 7x + x2
)

t5+
(

89 + 32x + 10x2 + x3
)

t6 +
(

233 + 122x + 59x2 + 14x3 + x4
)

t7+
(

610 + 422x + 272x2 + 106x3 + 19x4 + x5
)

t8+
(

1597 + 1376x + 1090x2 + 591x3 + 182x4 + 25x5 + x6
)

t9 + · · · ,

Q
(4,0,∅,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (41 + x)t5 +

(

122 + 9x + x2
)

t6+
(

365 + 51x + 12x2 + x3
)

t7 +
(

1094 + 235x + 84x2 + 16x3 + x4
)

t8+
(

3281 + 966x + 454x2 + 139x3 + 21x4 + x5
)

t9 + · · · , and
Q

(5,0,∅,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + (131 + x)t6 +

(

417 + 11x + x2
)

t7+
(

1341 + 74x + 14x2 + x3
)

t8 +
(

4334 + 396x + 113x2 + 18x3 + x4
)

t9 + · · · .
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ond highest power of x that o

urs in Q
(k,0,∅,0)
n,132 (x) is xn−k−1. Our next result will show that

Q
(k,0,∅,0)
n,132 (x)|xn−k−1 has a regular behavior for large enough n. That is, we have the following theorem.Theorem 6.7 For n ≥ 3 and k ≥ 1,

Q
(k,0,∅,0)
n+k−1,132|xn−2 = 2(k − 1) +

(

n

2

)

. (37)Proof. Note that Q
(1,0,∅,0)
132 (t, x) = Q

(0,0,1,0)
132 (t, x) and by Theorem 4.3, we have that

Q
(0,0,1,0)
n,132 (x)|xn−2 =

(

n
2

) for n ≥ 3. Thus, the theorem holds for k = 1.By indu
tion, assume that Q
(k,0,∅,0)
n+k−1,132|xn−2 = 2(k − 1) +

(

n
2

). We know by (29) that
Q

(k+1,0,∅,0)
n+k,132 (x) =

n+k
∑

i=1

Q
(k,0,∅,0)
i−1,132 (x)Q

(k+1,0,∅,0)
n+k−i,132 (x). (38)Note that for 2 ≤ i ≤ n − k − 2, the highest 
oe�
ient of x that appears in Q

(k+1,0,∅,0)
n+k−i,132 (x) is

xn+k−i−(k+1) = xn−i−1 . However the highest 
oe�
ient of x in Q
(k,0,∅,0)
i−1,132 (x) is xi−2 so that theonly terms on the RHS of (38) that 
an 
ontribute to the 
oe�
ient of xn−2 are i = 1, i = n + k − 1,and i = n + k. By Proposition 6.4, we know that

Q
(k+1,0,∅,0)
n+k−1,132(x)|xn−2 = 1 = Q

(k,0,∅,0)
n+k−2,132(x)|xn−2 ,so the i = 1 and i = n + k − 1 terms in (38) 
ontribute 2 to Q

(k+1,0,∅,0)
n+k,132 (x)|xn−2 . Now the i = n + kterm in (38) 
ontributes

Q
(k,0,∅,0)
n+k−1,132(x)|xn−2 = 2(k − 1) +

(

n

2

)to Q
(k+1,0,∅,0)
n+k,132 (x)|xn−2 . Thus,

Q
(k+1,0,∅,0)
n+k,132 (x)|xn−2 = 2k +

(

n

2

)

.

2The sequen
es (Q
(3,0,∅,0)
n,132 (x)|x)n≥4, (Q

(4,0,∅,0)
n,132 (x)|x)n≥5, and (Q

(5,0,∅,0)
n,132 (x)|x)n≥5 do not appear in theOEIS.7 The fun
tion Q

(∅,0,k,0)
132 (t, x)In this se
tion, we shall 
ompute Q

(∅,0,k,0)
132 (t, x) for k ≥ 0. First we 
ompute the generating fun
tionfor Q

(∅,0,0,0)
n,132 (x). Observe that n will always mat
h the pattern MMP (∅, 0, 0, 0) in any σ ∈ Sn. For

i ≥ 1, it is easy to see that Ai(σ) will 
ontribute nothing to mmp(∅,0,0,0)(σ), sin
e the presen
e of nto the right of an element in Ai(σ) ensures that it does not mat
h the pattern MMP (∅, 0, 0, 0) in
σ. Similarly, Bi(σ) will 
ontribute mmp(∅,0,0,0)(red(Bi(σ))) to mmp(∅,0,0,0)(σ), sin
e neither n nor any
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t on whether an element in Bi(σ) mat
hes the pattern
MMP (∅, 0, 0, 0) in σ. Thus,

Q
(∅,0,0,0)
n,132 (x) = x

n
∑

i=1

Ci−1Q
(∅,0,0,0)
n−i,132 (x). (39)Multiplying both sides of (39) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(∅,0,0,0)
132 (t, x) = txC(t) Q

(∅,0,0,0)
132 (t, x),so

Q
(∅,0,0,0)
132 (t, x) =

1

1 − txC(t)
.Next suppose that k ≥ 1. In this 
ase n in σ ∈ S

(i)
n (132) will mat
h the pattern MMP (∅, 0, k, 0) in

σ if and only if i > k. For i ≥ 1, it is easy to see that Ai(σ) will 
ontribute nothing to mmp(∅,0,k,0)(σ),sin
e the presen
e of n to the right ensures that none of these elements will mat
h the pattern
MMP (∅, 0, k, 0) in σ. Similarly, Bi(σ) will 
ontribute mmp(∅,0,k,0)(red(Bi(σ))) to mmp(∅,0,k,0)(σ),sin
e neither n nor any of the elements to the left of n have any e�e
t on whether an element in Bi(σ)mat
hes the pattern MMP (∅, 0, k, 0) in σ. Thus,

Q
(∅,0,k,0)
n,132 (x) =

k
∑

i=1

Ci−1Q
(∅,0,k,0)
n−i,132 (x) + x

n
∑

i=k+1

Ci−1Q
(∅,0,k,0)
n−i,132 (x). (40)Multiplying both sides of (40) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(∅,0,k,0)
132 (t, x) = t(

k−1
∑

j=0

Cjt
j)Q

(∅,0,k,0)
132 (t, x) + xtQ

(∅,0,k,0)
132 (C(t) −

k−1
∑

j=0

Cjt
j).Thus, we have the following theorem.Theorem 7.1

Q
(∅,0,0,0)
132 (t, x) =

1

1 − txC(t)
. (41)For k ≥ 1,

Q
(∅,0,k,0)
132 (t, x) =

1

1 − txC(t) − t(1 − x)(
∑k−1

j=0 Cjtj)
(42)and

Q
(∅,0,k,0)
132 (t, 0) =

1

1 − t(
∑k−1

j=0 Cjtj)
. (43)
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it formulas for Q
(∅,0,k,0)
n,132 (x)|xrWe have seen the 
onstant terms Q
(∅,0,k,0)
n132 (0) previously. That is, we have the following proposition.Proposition 7.2 Q

(∅,0,k,0)
132 (t, 0) = Q(0,0,k,0)(t, 0) for all k ≥ 1.Proof. The proposition follows immediately from Theorems 4.1 and 7.1. That is, we have

Q
(0,0,k,0)
132 (t, 0) =

1

1 − t(
∑k−1

j=0 Cjtj)
= Q

(∅,0,k,0)
132 (t, 0).This fa
t is easy to see dire
tly. That is, suppose that σ = σ1 · · · σn ∈ Sn(132) and σ 
ontains a

MMP (0, 0, k, 0)-mat
h. It is easy to see that if i is the largest su
h that σi mat
hes MMP (0, 0, k, 0),then there 
an be no j > i with σj > σi be
ause otherwise, σj would mat
h MMP (0, 0, k, 0). Thus,if σ has a MMP (0, 0, k, 0)-mat
h, then it also has a MMP (∅, 0, k, 0)-mat
h. Again, the 
onverse istrivial. Hen
e the number of σ ∈ Sn(132) with no MMP (0, 0, k, 0)-mat
hes equals the number of
σ ∈ Sn(132) with no MMP (∅, 0, k, 0)-mat
hes. 2We have 
omputed that

Q
(∅,0,0,0)
132 (t, x) = 1 + xt +

(

x + x2
)

t2 +
(

2x + 2x2 + x3
)

t3 +
(

5x + 5x2 + 3x3 + x4
)

t4 +
(

14x + 14x2 + 9x3 + 4x4 + x5
)

t5 +
(

42x + 42x2 + 28x3 + 14x4 + 5x5 + x6
)

t6 +
(

132x + 132x2 + 90x3 + 48x4 + 20x5 + 6x6 + x7
)

t7 +
(

429x + 429x2 + 297x3 + 165x4 + 75x5 + 27x6 + 7x7 + x8
)

t8 +
(

1430x + 1430x2 + 1001x3 + 572x4 + 275x5 + 110x6 + 35x7 + 8x8 + x9
)

t9 + · · · .Re
all that Q
(1,0,0,0)
132 (t, x) = 1

1−tC(tx) , so Q
(1,0,0,0)
132 (tx, 1

x
) = Q

(∅,0,0,0)
132 (t, x). This 
an easily be ex-plained by the fa
t that every σi, 1 ≤ i ≤ n, mat
hes either MMP (1, 0, 0, 0) or MMP (∅, 0, 0, 0).We have 
omputed that

Q
(∅,0,1,0)
132 (t, x) = 1 + t + (1 + x)t2 + (1 + 4x)t3 +

(

1 + 12x + x2
)

t4 +
(

1 + 34x + 7x2
)

t5 +
(

1 + 98x + 32x2 + x3
)

t6 +
(

1 + 294x + 124x2 + 10x3
)

t7 +
(

1 + 919x + 448x2 + 61x3 + x4
)

t8 +
(

1 + 2974x + 1576x2 + 298x3 + 13x4
)

t9 + · · · .In this 
ase, it is easy to see that the only σ ∈ Sn(132) that avoids the pattern MMP (∅, 0, 1, 0) isthe stri
tly de
reasing permutation. Thus, Q
(∅,0,1,0)
n,132 (0) = 1 for all n ≥ 1.It is also easy to see that the permutation that maximizes the number of mat
hes of MMP (∅, 0, 1, 0)in S2n(132) is (2n − 1)(2n)(2n − 3)(2n − 2) · · · 12, whi
h explains why the highest power of x in

Q
(∅,0,1,0)
2n,132 (x) is xn, whi
h has 
oe�
ient 1.More generally, we have the following proposition.Proposition 7.3 For all k ≥ 1, the highest power of x o

urring in Q

(∅,0,k−1,0)
kn,132 (x) is xn, with 
oe�-
ient (Ck−1)

n.



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 255Proof. It is easy to see that the permutations that maximize the number of mat
hes of MMP (∅, 0, k−
1, 0) in Skn(132) are the permutations that have blo
ks 
onsisting of

τ (n)(kn)τ (n−1)(k(n − 1))τ (n−2)(k(n − 2)) · · · τ (1)k,where for ea
h i = 1, . . . , n, τ (i) is a permutation of (i − 1)k + 1, . . . , (i − 1)k + k − 1 that avoids 132.Sin
e there are Ck−1 
hoi
es for ea
h τ (i), the result follows. 2It is also not di�
ult to see that the highest power of x in Q
(∅,0,1,0)
2n+1,132(x) is xn, whi
h has the
oe�
ient 3n + 1. That is, if σ ∈ Sn(132) and mmp(∅,0,1,0)(σ) = n, then σ must be equal to either

(2n + 1)(2n − 1)(2n)(2n − 3)(2n − 2) · · · 12,
(2n − 1)(2n)(2n + 1)(2n − 3)(2n − 2) · · · 12, or
(2n)(2n − 1)(2n + 1)(2n − 3)(2n − 2) · · · 12,or be of the form (2n)(2n+1)τ , where τ ∈ S2n−1(132), whi
h has n−1 o

urren
es of MMP (∅, 0, 1, 0).Thus, for n ≥ 2,
Q

(∅,0,1,0)
2n+1,132(x)|xn = 3 + Q

(∅,0,1,0)
2n−1,132(x)|xn−1 .The result now follows by indu
tion, sin
e Q

(∅,0,1,0)
3,132 (x)|x = 4.The sequen
e (Q

(∅,0,1,0)
n,132 (x)|x)n≥2 is A014143 in the OEIS, whi
h has the generating fun
tion

1−2t
√

1−4t
2t2(1−t)2

. That is, one 
an easily 
ompute that
Q

(∅,0,1,0)
132 (t, x)|x =

1

1 + t(x − 1) − xtC(t)
|x =

1

1 − (tx(C(t) − 1) + t)
|x

=
∑

n≥1

(tx(C(t) − 1) + t)n|x =
∑

n≥1

(

n

1

)

t(C(t) − 1)tn−1

= (C(t) − 1)
∑

n≥1

ntn =

(

1 −
√

1 − 4t

2t
− 1

)

t

(1 − t)2

=
1 − 2t −

√
1 − 4t

2(1 − t)2
.We have 
omputed that

Q
(∅,0,2,0)
132 (t, x) = 1 + t + 2t2 + (3 + 2x)t3 + (5 + 9x)t4 +

(8 + 34x)t5 +
(

13 + 115x + 4x2
)

t6 +
(

21 + 376x + 32x2
)

t7 +
(

34 + 1219x + 177x2
)

t8 +
(

55 + 3980x + 819x2 + 8x3
)

t9 + · · · .The sequen
e (Q
(∅,0,2,0)
n,132 (0))n≥2 is the Fibona

i numbers. We 
an give a 
ombinatorial explanationfor this fa
t as well. That is, the permutations in Sn(132) that avoid the pattern MMP (∅, 0, 2, 0) areof the form nα, where α is a permutation in Sn−1(132) that avoids MMP (∅, 0, 2, 0), or of the form

(n − 1)nβ, where β is a permutation in Sn−2(132) that avoids MMP (∅, 0, 2, 0). It follows that
Q

(∅,0,2,0)
n,132 (0) = Q

(∅,0,2,0)
n−1,132(0) + Q

(∅,0,2,0)
n−2,132(0).
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e (Q
(∅,0,2,0)
n,132 (x)|x)n≥3 does not appear in the OEIS.We have 
omputed that

Q
(∅,0,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (9 + 5x)t4 + (18 + 24x)t5 + (37 + 95x)t6 +

(73 + 356x)t7 +
(

146 + 1259x + 25x2
)

t8 +
(

293 + 4354x + 215x2
)

t9 + · · · .The sequen
e (Q
(∅,0,3,0)
n,132 (0))n≥0 is sequen
e A077947 in the OEIS, whi
h has the generating fun
tion

1
1−x−x2−2x3 . However, the sequen
e (Q

(∅,0,3,0)
n,132 (x)|x)n≥4 does not appear in the OEIS.We have 
omputed that

Q
(∅,0,4,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (28 + 14x)t5 + (62 + 70x)t6 +

(143 + 286x)t7 + (331 + 1099x)t8 + (738 + 4124x)t9 + · · · .The sequen
e (Q
(∅,0,4,0)
n,132 (0))n≥0 does not appear in the OEIS.Referen
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