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220 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKpapers [7, 8℄, are ontinuations of the systemati study of distributions of quadrant marked meshpatterns on permutations initiated by Kitaev and Remmel [6℄.In this paper, we study the number of ourrenes of what we all quadrant marked mesh patterns.To start with, let σ = σ1 · · · σn be a permutation written in one-line notation. Then we will onsiderthe graph of σ, G(σ), to be the set of points {(i, σi) : 1 ≤ i ≤ n}. For example, the graph of thepermutation σ = 471569283 is pitured in Figure 1. Then if we draw a oordinate system entered ata point (i, σi), we will be interested in the points that lie in the four quadrants I, II, III, and IV ofthat oordinate system as pitured in Figure 1. For any a, b, c, d ∈ N, where N = {0, 1, 2, . . .} is theset of natural numbers, we say that σi mathes the quadrant marked mesh pattern MMP (a, b, c, d)in σ if, in the oordinate system entered at (i, σi), G(σ) has at least a points in quadrant I, at least
b points in quadrant II, at least c points in quadrant III, and at least d points in quadrant IV. Forexample, if σ = 471569283, then σ4 = 5 mathes MMP (2, 1, 2, 1), sine relative to the oordinatesystem with origin (4, 5), G(σ) has 3, 1, 2, and 2 points in quadrants I, II, III, and IV, respetively.Note that if a oordinate in MMP (a, b, c, d) is 0, then there is no ondition imposed on the points inthe orresponding quadrant.In addition, we shall onsider quadrant marked mesh patterns MMP (a, b, c, d) where a, b, c, d ∈
N∪{∅}. Here, when a oordinate of MMP (a, b, c, d) is ∅, there must be no points in the orrespondingquadrant for σi to math MMP (a, b, c, d) in σ. For example, if σ = 471569283, then σ3 = 1 mathes
MMP (4, 2, ∅, ∅), sine relative to the oordinate system with origin (3, 1), G(σ) has 6, 2, 0, and 0points in quadrants I, II, III, and IV, respetively. We let mmp(a,b,c,d)(σ) denote the number of i suhthat σi mathes MMP (a, b, c, d) in σ.
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Figure 1: The graph of σ = 471569283.Note how the (two-dimensional) notation of Úlfarsson [11℄ for marked mesh patterns orrespondsto our (one-line) notation for quadrant marked mesh patterns. For example,
MMP(0, 0, k, 0) =

k

, MMP(k, 0, 0, 0) =
k

,
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MMP(0, a, b, c) =

a

b c

, and MMP(0, 0, ∅, k) =
k

.Given a sequene w = w1 · · ·wn of distint integers, let red(w) be the permutation found byreplaing the ith largest integer that appears in w by i. For example, if w = 2754, then red(w) = 1432.Given a permutation τ = τ1 · · · τj ∈ Sj , we say that the pattern τ ours in σ ∈ Sn if there exist
1 ≤ i1 < · · · < ij ≤ n suh that red(σi1 · · · σij ) = τ . We say that a permutation σ avoids the pattern τif τ does not our in σ. We will let Sn(τ) denote the set of permutations in Sn that avoid τ . In thetheory of permutation patterns, τ is alled a lassial pattern. See [5℄ for a omprehensive introdutionto the area of permutation patterns.It has been a rather popular diretion of researh in the literature on permutation patterns to studypermutations avoiding a 3-letter pattern subjet to extra restritions (see [5, Subsetion 6.1.5℄). Themain goal of this paper and the upoming papers [7, 8℄ is to study the generating funtions

Q
(a,b,c,d)
132 (t, x) = 1 +

∑

n≥1

tnQ
(a,b,c,d)
n,132 (x), (1)where for any a, b, c, d ∈ N ∪ {∅},

Q
(a,b,c,d)
n,132 (x) =

∑

σ∈Sn(132)

xmmp(a,b,c,d)(σ). (2)More preisely, we will study the generating funtions Q
(a,b,c,d)
132 (t, x) in all ases where exatly one ofthe oordinates a, b, c, d is non-zero and the remaining oordinates are 0 plus the generating funtions

Q
(k,0,∅,0)
132 (t, x) and Q

(∅,0,k,0)
132 (t, x). In [7, 8℄, we will study the generating funtions Q

(a,b,c,d)
132 (t, x) for

a, b, c, d ∈ N where at least two of the parameters a, b, c, d are greater than 0.For example, here are two tables of statistis for S3(132) that we will be interested in.
σ mmp(1,0,0,0)(σ) mmp(0,1,0,0)(σ) mmp(0,0,1,0)(σ) mmp(0,0,0,1)(σ)123 2 0 2 0213 2 1 1 1231 1 1 1 2312 1 2 1 1321 0 2 0 2
σ mmp(2,0,0,0)(σ) mmp(0,2,0,0)(σ) mmp(0,0,2,0)(σ) mmp(0,0,0,2)(σ)123 1 0 1 0213 0 0 1 0231 0 1 0 0312 0 0 0 1321 0 1 0 1Note that there is one obvious symmetry in this ase. That is, we have the following lemma.



222 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKLemma 1.1 For any a, b, c, d ∈ N ∪ {∅}, Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x).Proof. If we start with the graph G(σ) of a permutation σ ∈ Sn(132) and re�et the graph about theline y = x, then we get the permutation σ−1, whih is also in Sn(132). It is easy to see that points inquadrants I, II, III, and IV in the oordinate system with origin (i, σi) in G(σ) will re�et to pointsin quadrants I, IV, III, and II, respetively, in the oordinate system with origin (σi, i) in G(σ−1). Itfollows that the map σ → σ−1 shows that Q

(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x). 2As a matter of fat, avoidane of a marked mesh pattern MMP (a, b, c, d) with a, b, c, d ∈ N analways be expressed in terms of multi-avoidane of (usually many) lassial patterns. For example,a permutation σ ∈ Sn avoids the pattern MMP (2, 0, 0, 0) if and only if it avoids both 123 and 132.Thus, among our results we will re-derive several known fats in the permutation patterns theory andget seemly new enumeration of permutations avoiding simultaneously the patterns 132 and 1234 (seethe disussion right below (13)). However, our main goals are more ambitious in that we will omputethe generating funtion for the distribution of the ourrenes of the pattern in question, not just thegenerating funtion for the number of permutations that avoid the pattern.For any a, b, c, d, we will write Q

(a,b,c,d)
n,132 (x)|xk for the oe�ient of xk in Q

(a,b,c,d)
n,132 (x). We shallalso show that sequenes of the form (Q

(a,b,c,d)
n,132 (x)|xr)n≥s ount a variety of ombinatorial objets thatappear in the On-line Enylopedia of Integer Sequenes (OEIS) [9℄. Thus, our results will give newombinatorial interpretations of suh lassial sequenes as the Fine numbers and the Fibonai num-bers, as well as provide ertain sequenes that appear in the OEIS with a ombinatorial interpretationwhere none had existed before.2 Connetions with other ombinatorial objetsIt is well-known that the ardinality of Sn(132) is the nth Catalan number Cn = 1

n+1

(2n
n

). There aremany ombinatorial interpretations of the Catalan numbers. For example, in his book [10℄, Stanleylists 66 di�erent ombinatorial interpretations of the Catalan numbers, and he gives many more om-binatorial interpretations of the Catalan numbers on his web site. Hene, any time one has a naturalbijetion from Sn(132) into a set of ombinatorial objets On ounted by the nth Catalan number, onean use the bijetion to transfer our statistis mmp(a,b,c,d) to orresponding statistis on the elementsof On. In this setion, we shall brie�y desribe some of these statistis in two of the most well-knowninterpretations of the Catalan numbers, namely Dyk paths and binary trees.A Dyk path of length 2n is a path that starts at (0, 0) and ends at the point (2n, 0) that onsistsof a sequene of up-steps (1, 1) and down-steps (1,−1) suh that the path always stays on or abovethe x-axis. We will generally enode a Dyk path by its sequene of up-steps and down-steps. Let D2ndenote the set of Dyk paths of length 2n. Then it is easy to onstrut a bijetion φn : Sn(132) → D2nby indution. To de�ne φn, we need to de�ne the lifting of a path P ∈ D2n to a path L(P ) ∈ D2n+2.Here L(P ) is onstruted by simply appending an up-step at the start of P and a down-step at theend of P . That is, if P = (p1, . . . , p2n), then L(P ) = ((1, 1), p1, . . . , p2n, (1,−1)). An example of thismap is pitured in Figure 2. If P1 ∈ D2k and P2 ∈ D2n−2k, we let P1P2 denote the element of D2n thatonsists of the path P1 followed by the path P2.To de�ne φn, we �rst let φ1(1) = ((1, 1), (1,−1)). For any n > 1 and any σ ∈ Sn(132), we de�ne
φn(σ) by ases as follows.
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Figure 2: The lifting of a Dyk path.Case 1. σn = n.Then φn(σ) = L(φn−1(σ1 · · · σn−1)).Case 2. σi = n, where 1 ≤ i < n. In this ase, φn(σ) = P1P2, where
P1 = φi(red(σ1 · · · σi)) and P2 = φn−i(red(σi+1 · · · σn)) = φn−i(σi+1 · · · σn).We have pitured this map for the �rst few values of n by listing the permutation σ on the leftand the value of φn(σ) on the right in Figure 3.Suppose we are given a path P = (p1, . . . , p2n) ∈ D2n. Then we say that a step pi has height s if
pi is an up-step and the right-hand end point of pi is (i, s) or pi is a down-step and the left-hand endpoint of pi is (i − 1, s). We say that (pi, . . . , pi+2k−1) is an interval of length 2k if pi is an up-step,
pi+2k−1 is a down-step, pi and pi+2k−1 have height 1, and, for all i < j < i + 2k − 1, the height of pj isstritly greater than 1. Thus, an interval is a segment of the path that starts and ends on the x-axisbut does not hit the x-axis in between. For example, if we onsider the path φ3(312) = (p1, . . . , p6)pitured in Figure 3, then the heights of the steps reading from left to right are 1, 1, 1, 2, 2, 1 and thereare two intervals, one of length 2 onsisting of (p1, p2) and one of length 4 onsisting of (p3, p4, p5, p6).The following theorem is straightforward to prove by indution.Theorem 2.1 Let k ≥ 1.1. For any σ ∈ Sn(132), mmp(k,0,0,0)(σ) is equal to the number of up-steps (equivalently, to thenumber of down-steps) of height ≥ k + 1 in φn(σ).
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Figure 3: Some initial values of the map φn.2. For any σ ∈ Sn(132), 1 plus the maximum k suh that mmp(0,0,k,0)(σ) 6= 0 is equal to one halfthe maximum length of an interval in φn(σ).Proof. We proeed by indution on n. Clearly the theorem is true for n = 1. Now supposethat n > 1 and the theorem is true for all m < n. Let σ ∈ Sn(132) with σi = n. Then itmust be the ase that σ1, . . . , σi−1 are all stritly bigger than all the elements in {σi+1, . . . , σn}, so
{1, . . . , n − i} = {σi+1, . . . , σn} and {n − i + 1, . . . , n} = {σ1, . . . , σi}. Now onsider the two ases inthe de�nition of φn.Case 1. σn = n.In this ase, φn(σ) = L(P ), where P = φn−1(σ1 · · · σn−1). Thus, for k ≥ 2, the number of up-steps of height > k in φn(σ) equals the number of up-steps of height ≥ k in φn−1(σ1 · · · σn−1),whih equals mmp(k−1,0,0,0)(σ1 · · · σn−1) by indution. But sine σn = n, it is lear that for k ≥ 2,
mmp(k−1,0,0,0)(σ1 · · · σn−1) = mmp(k,0,0,0)(σ). Thus, mmp(k,0,0,0)(σ) equals the number of up-steps ofheight > k in φn(σ). Finally, mmp(1,0,0,0)(σ) = n − 1, and there are n − 1 up-steps of height ≥ 2 in
φn(σ).In this ase, the maximum length of an interval in φn(σ) equals 2n and σn = n shows that
mmp(0,0,n−1,0)(σ) = 1, so one half of the maximum length interval in φn(σ) equals 1 plus the maxi-mum k suh that mmp(0,0,k,0)(σ) 6= 0.Case 2. σi = n, where 1 ≤ i ≤ n − 1.In this ase, φn(σ) = P1P2, where P1 = φi(red(σ1 · · · σi)) and P2 = φn−i(σi+1 · · · σn). It follows thatfor any k ≥ 1, the number of up-steps of height > k in φn(σ) equals the number of up-steps of height
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> k in P1 plus the number of up-steps of height > k in P2, whih by indution is equal to

mmp(k,0,0,0)(red(σ1 · · · σi)) + mmp(k,0,0,0)(σi+1 · · · σn).But learly
mmp(k,0,0,0)(σ) = mmp(k,0,0,0)(red(σ1 · · · σi)) + mmp(k,0,0,0)(σi+1 · · · σn),so mmp(k,0,0,0)(σ) is equal to the number of up-steps of height > k in φn(σ).Finally, the maximum length of an interval in φn(σ) is the maximum of the maximum lengthintervals in P1 and P2. On the other hand, the maximum k suh that mmp(0,0,k,0)(σ) 6= 0 is themaximum k suh that mmp(0,0,k,0)(red(σ1 · · · σi)) 6= 0 or

mmp(0,0,k,0)(σi+1 · · · σn) 6= 0. Thus, it follows from the indution hypothesis that one half of themaximum length of an interval in φn(σ) is 1 plus the maximum k suh that mmp(0,0,k,0)(σ) 6= 0. 2We have the following orollary to Theorem 2.1.Corollary 2.2 Let k ≥ 1.1. The number of permutations σ ∈ Sn(132) suh that mmp(k,0,0,0)(σ) = 0 equals the number ofDyk paths P ∈ D2n suh that all steps have height ≤ k.2. The number of permutations σ ∈ Sn(132) suh that mmp(0,0,k,0)(σ) = 0 equals the number ofDyk paths P ∈ D2n suh that the maximum length of an interval is ≤ 2k.Another set ounted by the Catalan numbers is the set of rooted binary trees on n nodes whereeah node is either a leaf, a node with a left hild, a node with a right hild, or a node with both aright and a left hild. Let Bn denote the set of rooted binary trees with n nodes. Then it is well-knownthat |Bn| = Cn. In this paper, we shall draw binary trees with their root at the bottom and the treegrowing upward. Again it is easy to de�ne a bijetion θn : Sn(132) → Bn by indution. Start with asingle node, denoted the root, and let i be suh that σi = n. Then, if i > 1, the root will have a lefthild, and the subtree above that hild is θi−1(red(σ1 · · · σi−1)). If i < n, then the root will have aright hild, and the subtree above that hild is θn−i(σi+1 · · · σn). We have pitured the �rst few valuesof this map by listing a permutation σ on the left and the value of θn(σ) on the right in Figure 4.If T ∈ Bn and η is a node of T , then the left subtree of η is the subtree of T whose root is the lefthild of η and the right subtree of η is the subtree of T whose root is the right hild of η. The edgethat onnets η to its left hild will be alled a left edge and the edge that onnets η to its right hildwill be alled a right edge.The following theorem is straightforward to prove by indution.Theorem 2.3 Let k ≥ 1.1. For any σ ∈ Sn(132), mmp(k,0,0,0)(σ) is equal to the number of nodes η in θn(σ) suh that thereare ≥ k left edges on the path from η to the root of θn(σ).2. For any σ ∈ Sn(132), mmp(0,0,k,0)(σ) is the number of nodes η in θn(σ) whose left subtree hassize ≥ k.
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Figure 4: Some initial values of the map θn.Proof. We proeed by indution on n. Clearly the theorem is true for n = 1. Now suppose that n > 1and the theorem is true for all m < n. Let σ ∈ Sn(132) with σi = n, let r be the root of θn(σ), and let
η be a node in θn(σ).If η is in r's left subtree, then η has ≥ k left edges on the path to r if and only if it has ≥ k − 1left edges on the path to the root of the left subtree of r. If η is in r's right subtree, then η has
≥ k left edges on the path to r if and only if it has ≥ k left edges on the path to the root of theright subtree of r. Therefore, by the indution hypothesis the number of nodes with ≥ k left edgeson the path to the root is mmp(k−1,0,0,0)(red(σ1 · · · σi−1)) + mmp(k,0,0,0)(σi+1 · · · σn), regarding eahterm as 0 if there is no orresponding subtree. However, sine eah term in σ1 · · · σi−1 has n tothe right of it and n never mathes MMP (k, 0, 0, 0), we see that mmp(k−1,0,0,0)(red(σ1 · · · σi−1)) =
mmp(k,0,0,0)(red(σ1 · · · σi)). Thus, the number of nodes with ≥ k left edges on the path to the root is
mmp(k,0,0,0)(red(σ1 · · · σi)) + mmp(k,0,0,0)(σi+1 · · · σn) = mmp(k,0,0,0)(σ).It is lear that the number of nodes with left subtrees of size ≥ k is equal to the sum of those fromeah subtree of the root, possibly plus one for the root itself. In other words, if χ(statement) equals 1if the statement is true and 0 otherwise, then by the indution hypothesis, the number of suh nodesis mmp(0,0,k,0)(red(σ1 · · · σi−1))+mmp(0,0,k,0)(σi+1 · · · σn)+χ(i > k), again regarding eah term as 0 ifthere is no orresponding subtree. However, sine n does not a�et whether any other point mathes
MMP (0, 0, k, 0) and itself mathes whenever i > k, we see this number of nodes is preisely equal to
mmp(0,0,k,0)(σ). 2Thus, we have the following orollary.Corollary 2.4 Let k ≥ 1.1. The number of permutations σ ∈ Sn(132) suh that mmp(k,0,0,0)(σ) = 0 equals the number of



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 227rooted binary trees T ∈ Bn that have no nodes η with ≥ k left edges on the path from η to theroot of T .2. The number of permutations σ ∈ Sn(132) suh that mmp(0,0,k,0)(σ) = 0 equals the number ofrooted binary trees T ∈ Bn suh that there is no node η of T whose left subtree has size ≥ k.3 The funtion Q
(k,0,0,0)
132 (t, x)In this setion, we shall study the generating funtion Q

(k,0,0,0)
132 (t, x) for k ≥ 0.Throughout this paper, we shall lassify the 132-avoiding permutations σ = σ1 · · · σn by the positionof n in σ. Let S

(i)
n (132) denote the set of σ ∈ Sn(132) suh that σi = n.Clearly the graph G(σ) of eah σ ∈ S

(i)
n (132) has the struture pitured in Figure 5. That is,in G(σ), the elements to the left of n, Ai(σ), have the struture of a 132-avoiding permutation, theelements to the right of n, Bi(σ), have the struture of a 132-avoiding permutation, and all the elementsin Ai(σ) lie above all the elements in Bi(σ). As mentioned above, |Sn(132)| = Cn = 1

n+1

(

2n
n

). Thegenerating funtion for these numbers is given by
C(t) =

∑

n≥0

Cntn =
1 −

√
1 − 4t

2t
=

2

1 +
√

1 − 4t
. (3)

ni1

1

n

A (σ)

(σ)B

i

i

Figure 5: The struture of 132-avoiding permutations.Clearly,
Q

(0,0,0,0)
132 (t, x) =

∑

n≥0

Cnxntn = C(xt) =
1 −

√
1 − 4xt

2xt
.



228 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKNext we onsider Q
(k,0,0,0)
132 (t, x) for k ≥ 1. It is not di�ult to see that Ai(σ) will ontribute

mmp(k−1,0,0,0)(red(Ai(σ))) to mmp(k,0,0,0)(σ), sine eah of the elements to the left of n will maththe pattern MMP (k, 0, 0, 0) in σ if and only if it mathes the pattern MMP (k − 1, 0, 0, 0) in thegraph of Ai(σ). Similarly, Bi(σ) will ontribute mmp(k,0,0,0)(red(Bi(σ))) to mmp(k,0,0,0)(σ) beausethe elements to the left of Bi(σ) have no e�et on whether an element in Bi(σ) mathes the pattern
MMP (k, 0, 0, 0) in σ. It follows that

Q
(k,0,0,0)
n,132 (x) =

n
∑

i=1

Q
(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x). (4)Multiplying both sides of (4) by tn and summing for n ≥ 1, we see that

−1 + Q
(k,0,0,0)
132 (t, x) = tQ

(k−1,0,0,0)
132 (t, x) Q

(k,0,0,0)
132 (t, x).Hene for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1 − tQ
(k−1,0,0,0)
132 (t, x)

.Thus, we have the following theorem.Theorem 3.1
Q

(0,0,0,0)
132 (t, x) = C(xt) =

1 −
√

1 − 4xt

2xt
(5)and, for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1 − tQ
(k−1,0,0,0)
132 (t, x)

. (6)Theorem 3.1 immediately implies the following orollary.Corollary 3.2
Q

(1,0,0,0)
132 (t, 0) =

1

1 − t
(7)and, for k ≥ 2,

Q
(k,0,0,0)
132 (t, 0) =

1

1 − tQ
(k−1,0,0,0)
132 (t, 0)

. (8)
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(k,0,0,0)
n,132 (x)|xrFirst we shall onsider the problem of omputing Q

(k,0,0,0)
n,132 (x)|x0 . That is, we shall be interested in thegenerating funtions Q

(k,0,0,0)
132 (t, 0). Using Corollary 3.2, one an easily ompute that

Q
(2,0,0,0)
132 (t, 0) =

1 − t

1 − 2t
,

Q
(3,0,0,0)
132 (t, 0) =

1 − 2t

1 − 3t + t2
,

Q
(4,0,0,0)
132 (t, 0) =

1 − 3t + t2

1 − 4t + 3t2
,

Q
(5,0,0,0)
132 (t, 0) =

1 − 4t + 3t2

1 − 5t + 6t2 − t3
,

Q
(6,0,0,0)
132 (t, 0) =

1 − 5t + 6t2 − t3

1 − 6t + 10t2 − 4t3
, and

Q
(7,0,0,0)
132 (t, 0) =

1 − 6t + 10t3 − 4t3

1 − 7t + 15t2 − 10t3 + t4
.By Corollary 2.2, Q

(k,0,0,0)
132 (t, 0) is also the generating funtion for the number of Dyk pathswhose maximum height is less than or equal to k. For example, this interpretation is given to se-quene A080937 in the OEIS, whih is the sequene (Q

(5,0,0,0)
n,132 (0))n≥0, and to sequene A080938 inthe OEIS, whih is the sequene (Q

(7,0,0,0)
n,132 (0))n≥0. However, similar interpretations are not given to

(Q
(k,0,0,0)
n,132 (0))n≥0, where k /∈ {5, 7}. For example, suh an interpretation is not found for

(Q
(2,0,0,0)
n,132 (0))n≥0, (Q

(3,0,0,0)
n,132 (0))n≥0, (Q

(4,0,0,0)
n,132 (0))n≥0, (Q

(6,0,0,0)
n,132 (0))n≥0,whih are sequenes A011782, A001519, A124302, and A024175 in the OEIS, respetively. Similarly,by Corollary 2.4, the generating funtion Q

(k,0,0,0)
132 (t, 0) is the generating funtion for the number ofrooted binary trees T that have no nodes η suh that there are ≥ k left edges on the path from η tothe root of T .We an easily ompute the �rst few terms of Q

(k,0,0,0)
132 (t, x) for small k using Mathematia. Forexample, we have omputed the following.

Q
(1,0,0,0)
132 (t, x) = 1 + t + (1 + x)t2 +

(

1 + 2x + 2x2
)

t3 +
(

1 + 3x + 5x2 + 5x3
)

t4
(

1 + 4x + 9x2 + 14x3 + 14x4
)

t5 +
(

1 + 5x + 14x2 + 28x3 + 42x4 + 42x5
)

t6 +
(

1 + 6x + 20x2 + 48x3 + 90x4 + 132x5 + 132x6
)

t7 +
(

1 + 7x + 27x2 + 75x3 + 165x4 + 297x5 + 429x6 + 429x7
)

t8 +
(

1 + 8x + 35x2 + 110x3 + 275x4 + 572x5 + 1001x6 + 1430x7 + 1430x8
)

t9 + · · · .In this ase, it is quite easy to explain some of the oe�ients that appear in the polynomials
Q

(1,0,0,0)
n,132 (x). Some of these explanations are given in the following theorem.



230 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKTheorem 3.3 1. Q
(1,0,0,0)
n,132 (0) = 1 for n ≥ 1,2. Q

(1,0,0,0)
n,132 (x)|x = n − 1 for n ≥ 2,3. Q
(1,0,0,0)
n,132 (x)|x2 =

(

n
2

)

− 1 for n ≥ 3,4. Q
(1,0,0,0)
n,132 (x)|xn−1 = Cn−1 for n ≥ 1, and5. Q
(1,0,0,0)
n,132 (x)|xn−2 = Cn−1 for n ≥ 2.Proof. There is only one permutation σ ∈ Sn with mmp(1,0,0,0)(σ) = 0, namely, σ = n(n − 1) · · · 1.Thus, the onstant term in Q

(1,0,0,0)
n,132 (x) is always 1. Also the only way to get a permutation σ ∈ Snthat has mmp(1,0,0,0)(σ) = n−1 is to have σn = n. It follows that the oe�ient of xn−1 in Q

(1,0,0,0)
n,132 (x)is the number of permutations σ ∈ Sn(132) suh that σn = n, whih is learly Cn−1. It is also easy tosee that the only permutations σ ∈ Sn(132) with mmp(1,0,0,0)(σ) = 1 are the permutations of the form

σ = n(n − 1) · · · (i + 1)(i − 1)i(i − 2) · · · 21.Thus, the oe�ient of x in Q
(1,0,0,0)
n,132 (x) is always n − 1.For (3), note that we have Q

(1,0,0,0)
3,132 (x)|x2 = 2 =

(3
2

)

− 1. For n ≥ 4, let a(n) denote the oe�ientof x2 in Q
(1,0,0,0)
n,132 (x). The permutations σ ∈ Sn(132) suh that mmp(1,0,0,0)(σ) = 2 must have either

σ1 = n, σ2 = n, or σ3 = n. If σ3 = n, it must be the ase that {σ1, σ2} = {n − 1, n − 2} and that
mmp(1,0,0,0)(σ4 · · · σn) = 0. Thus, σ4 · · · σn must be dereasing, so there are exatly two permutations
σ ∈ Sn(132) suh that σ3 = n and mmp(1,0,0,0)(σ) = 2. If σ2 = n, it must be the ase that σ1 = n − 1and that mmp(1,0,0,0)(σ3 · · · σn) = 1. In that ase, we know that there are n − 3 hoies for σ3 · · · σn,so there are n − 3 permutations σ ∈ Sn(132) suh that σ2 = n and mmp(1,0,0,0)(σ) = 2. Finally,it is lear that if σ1 = n, then we must have that mmp(1,0,0,0)(σ2 · · · σn) = 2, so there are a(n − 1)permutations σ ∈ Sn(132) suh that σ1 = n and mmp(1,0,0,0)(σ) = 2. Thus, we have shown that
a(n) = a(n − 1) + n − 1 from whih it easily follows by indution that a(n) =

(

n
2

)

− 1.Finally, for (5), let σ = σ1 · · · σn ∈ Sn(132) be suh that mmp(1,0,0,0)(σ) = n−2. We learly annothave σn = n, so n and σn must be the two elements of σ that do not math the pattern MMP (1, 0, 0, 0)in σ. Now if σi = n, then Bi(σ) onsists of the elements 1, . . . , n − i. But then it must be the asethat σn = n− i. Note that this implies that σn an be removed from σ in a ompletely reversible way.That is, σ → red(σ1 · · · σn−1) is a bijetion onto Sn−1(132). Hene there are Cn−1 suh σ. 2We have omputed that
Q

(2,0,0,0)
132 (t, x) = 1 + t + 2t2 + (4 + x)t3 +

(

8 + 4x + 2x2
)

t4 +
(

16 + 12x + 9x2 + 5x3
)

t5 +
(

32 + 32x + 30x2 + 24x3 + 14x4
)

t6 +
(

64 + 80x + 88x2 + 85x3 + 70x4 + 42x5
)

t7 +
(

128 + 192x + 240x2 + 264x3 + 258x4 + 216x5 + 132x6
)

t8 +
(

256 + 448x + 624x2 + 760x3 + 833x4 + 819x5 + 693x6 + 429x7
)

t9 + · · · .Again it is easy to explain some of these oe�ients. That is, we have the following theorem.
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(2,0,0,0)
n,132 (0) = 2n−1 if n ≥ 3,2. for n ≥ 3, the highest power of x that appears in Q

(2,0,0,0)
n,132 (x) is xn−2, with

Q
(2,0,0,0)
n,132 (x)|xn−2 = Cn−2, and3. Q
(2,0,0,0)
n,132 (x)|x = (n − 2)2n−3 for n ≥ 3.Proof. It is easy to see that the only σ ∈ Sn(132) that have mmp(2,0,0,0)(σ) = n − 2 must have

σn−1 = n − 1 and σn = n. Note that if σn−1 = n and σn = n − 1 then we have an ourrene of 132for n ≥ 3. Thus, the oe�ient of xn−2 in Q
(2,0,0,0)
n,132 (x) is Cn−2 if n ≥ 3.The fat that Q

(2,0,0,0)
n,132 (0) = 2n−1 for n ≥ 1 is an immediate onsequene of the fat that

Q
(2,0,0,0)
132 (t, 0) = 1−t

1−2t
. In fat, this is a known result, sine avoidane of the pattern MMP (2, 0, 0, 0)is equivalent to avoiding simultaneously the (lassial) patterns 132 and 123 (see [5, p. 224℄). Onean also give a simple ombinatorial proof of this fat. Clearly it is true for n = 1. For n ≥ 2, notethat σ1 must be either n or n − 1. Also, red(σ2 · · · σn) must avoid the pattern MMP (2, 0, 0, 0). Sineevery permutation red(σ2 · · · σn) avoiding MMP (2, 0, 0, 0) an be obtained in this manner in exatlytwo ways, one with σ1 = n and one with σn = n − 1, we see that there are 2 · 2n−2 = 2n−1 suh σ.The initial terms of the sequene (Q

(2,0,0,0)
132 (t, x)|x)n≥3 are

1, 4, 12, 32, 80, 192, 448, . . . ,whih are the initial terms of sequene A001787 in OEIS whose n-th term is an = n2n−1. Now anhas many ombinatorial interpretations inluding the number of edges in the n-dimensional hyperubeand the number of permutations in Sn+2(132) with exatly one ourrene of the pattern 123. Theordinary generating funtion of the sequene is x
(1−2x)2 , whih implies that

Q
(2,0,0,0)
132 (t, x)|x =

t3

(1 − 2t)2
.This an be proved in two di�erent ways. That is, for any k ≥ 2,

Q
(k,0,0,0)
132 (t, x)|x =

(

1

1 − tQ
(k−1,0,0,0)
132 (t, x)

)

∣

∣

x

=



1 +
∑

n≥1

tn(Q
(k−1,0,0,0)
132 (t, x))n





∣

∣

x

=
∑

n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1Q

(k−1,0,0,0)
132 (t, x)|x

= Q
(k−1,0,0,0)
132 (t, x)|x

∑

n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1. (9)
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d

dt
Q

(k,0,0,0)
132 (t, 0) =

d

dt

(

1

1 − tQ
(k−1,0,0,0)
132 (t, 0)

)

=
∑

n≥1

n(tQ
(k−1,0,0,0)
132 (t, 0))n−1 d

dt

(

tQ
(k−1,0,0,0)
132 (t, 0)

)

,so
t d
dt

Q
(k,0,0,0)
132 (t, 0)

d
dt

(

tQ
(k−1,0,0,0)
132 (t, 0)

) =
∑

n≥1

ntn(Q
(k−1,0,0,0)
132 (t, 0))n−1. (10)Combining (9) and (10), we obtain the following reursion.Theorem 3.5 For k ≥ 1,

Q
(k,0,0,0)
132 (t, x)|x = Q

(k−1,0,0,0)
132 (t, x)|x

t d
dt

Q
(k,0,0,0)
132 (t, 0)

d
dt

(

tQ
(k−1,0,0,0)
132 (t, 0)

) . (11)We know that
Q

(1,0,0,0)
132 (t, x)|x =

∑

n≥2

(n − 1)tn =
t2

(1 − t)2and
Q

(1,0,0,0)
132 (t, 0) =

1

1 − t
and Q

(2,0,0,0)
132 (t, 0) =

1 − t

1 − 2t
.Thus,

Q
(2,0,0,0)
132 (t, x)|x = Q

(1,0,0,0)
132 (t, x)|x

t d
dt

Q
(2,0,0,0)
132 (t, 0)

d
dt

(

tQ
(1,0,0,0)
132 (t, 0)

)

=
t2

(1 − t)2

t d
dt

(

1−t
1−2t

)

d
dt

t
1−t

=
t3

(1 − 2t)2
.We an also give a diret proof of this result. That is, we an give a diret proof of the fat that for

n ≥ 3, b(n) = Q
(2,0,0,0)
n,132 (x)|x = (n−2)2n−3. Note that b(3) = 1 = (3−2)23−3 and b(4) = (4−2)24−3 = 4,so our laim holds for n = 3, 4. Then let n ≥ 5 and assume by indution that b(k) = (k − 2)2k−3for 3 ≤ k < n. Now suppose that σ ∈ S

(i)
n (132) and mmp(2,0,0,0) = 1. If the element of σ thatmathes MMP (2, 0, 0, 0) ours in Ai(σ), then it must be the ase that mmp(1,0,0,0)(Ai(σ)) = 1 and

mmp(2,0,0,0)(Bi(σ)) = 0. By our previous results, we have (i−2) hoies for Ai(σ) and a(n−i) = 2n−i−1hoies for Bi(σ). Note that this an happen only for 3 ≤ i ≤ n − 1, so suh permutations ontribute
n−1
∑

i=3

(i − 2)2n−i−1 =

n−3
∑

j=1

j2n−3−j =

n−4
∑

k=0

(n − 3 − k)2k



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 233to b(n). If the element of σ that mathes MMP (2, 0, 0, 0) ours in Bi(σ), then we learly have
mmp(1,0,0,0)(Ai(σ)) = 0, whih means that Ai(σ) is dereasing and mmp(2,0,0,0)(Bi(σ)) = 1. This anhappen only for 1 ≤ i ≤ n − 3. Thus, suh permutations will ontribute

b(3) + · · · + b(n − 1) =

n−1
∑

i=3

(i − 2)2(i−3) =

n−4
∑

k=0

(k + 1)2kto b(n). The only permutations that we have not aounted for are the permutations σ = σ1 · · · σn ∈
Sn(132) where σn = n and mmp(1,0,0,0)(σ1 · · · σn−1) = 1, and there are n−2 suh permutations. Thus,

b(n) = (n − 2) +

n−4
∑

k=0

2k(n − 3 − k + k + 1)

= (n − 2)

(

1 +

n−4
∑

k=0

2k

)

= (n − 2)(1 + 2n−3 − 1) = (n − 2)2n−3.

2We an also explain the oe�ient of seond highest power of x that appears in Q
(k,0,0,0)
n,132 (x) for

k ≥ 2.Theorem 3.6 For all k ≥ 2 and n ≥ k + 2,
Q

(k,0,0,0)
n,132 (x)|xn−k−1 = Cn−k + 2(k − 1)Cn−k−1. (12)Proof. We �rst onsider the ase k = 2. That is, we must ompute Q

(2,0,0,0)
n,132 (x)|xn−3 . In this ase,

Q
(2,0,0,0)
n,132 (x) =

n
∑

i=1

Q
(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x).We have shown that for n ≥ 1, the highest power of x that ours in Q

(1,0,0,0)
n,132 (x) is xn−1 and, for

n ≥ 2, the highest power of x that ours in Q
(2,0,0,0)
n,132 (x) is xn−2. It follows that for i = 2, . . . , n − 2,the highest power of x whih ours in Q

(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) is less than n − 3 so that we have onlythree ases to onsider.Case 1. i = 1.In this ase, Q

(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) = Q

(2,0,0,0)
n−1,132(x) and we know that

Q
(2,0,0,0)
n−1,132(x)|xn−3 = Cn−3 for n ≥ 4.Case 2. i = n − 1.In this ase, Q

(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) = Q

(1,0,0,0)
n−2,132(x) and we know that

Q
(2,0,0,0)
n−2,132(x)|xn−3 = Cn−3 for n ≥ 4.



234 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKCase 3. i = n.In this ase, Q
(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) = Q

(1,0,0,0)
n−1,132(x) and we know that

Q
(1,0,0,0)
n−1,132(x)|xn−3 = Cn−2 for n ≥ 4.Thus for n ≥ 4, Q

(2,0,0,0)
n,132 (x)|xn−3 = Cn−2 + 2Cn−3.Now suppose that k ≥ 3 and we have proved by indution that

Q
(k−1,0,0,0)
n,132 (x)|xn−k = Cn−k+1 + 2(k − 2)Cn−k for n ≥ k + 1. In this ase,

Q
(k,0,0,0)
n,132 (x) =

n
∑

i=1

Q
(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x).We have shown that for n ≥ k, the highest power of x that ours in Q

(k−1,0,0,0)
n,132 (x) is xn−k+1 and,for n ≥ k + 1, the highest power of x that ours in Q

(k,0,0,0)
n,132 (x) is xn−k. It is easy to hek that for

i = 2, . . . , n − 2, the highest power of x whih ours in Q
(1,0,0,0)
i−1,132 (x)Q

(2,0,0,0)
n−i,132 (x) is less that n − k − 1so that we have only three ases to onsider.Case 1. i = 1.In this ase, Q

(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x) = Q

(k,0,0,0)
n−1,132(x) and we know that

Q
(k,0,0,0)
n−1,132(x)|xn−k−1 = Cn−1−k for n ≥ k + 2.Case 2. i = n − 1.In this ase, Q

(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x) = Q

(k−1,0,0,0)
n−2,132 (x) and we know that

Q
(k−1,0,0,0)
n−2,132 (x)|xn−k−1 = Cn−k−1 for n ≥ k + 2.Case 3. i = n.In this ase, Q

(k−1,0,0,0)
i−1,132 (x)Q

(k,0,0,0)
n−i,132 (x) = Q

(k−1,0,0,0)
n−1,132 (x) and we know by indution that

Q
(k−1,0,0,0)
n−1,132 (x)|xn−k−1 = Cn−k + 2(k − 2)Cn−k−1 for n ≥ k + 2.Thus for n ≥ k + 2, Q

(k,0,0,0)
n,132 (x)|xn−k−1 = Cn−k + 2(k − 1)Cn−k−1. 2We note that the sequene (Q

(2,0,0,0)
n,132 (x)|xn−3)n≥4 is sequene A038629 in the OEIS whih previouslyhad no ombinatorial interpretation. The sequenes (Q

(3,0,0,0)
n,132 (x)|xn−4)n≥5 and (Q

(4,0,0,0)
n,132 (x)|xn−5)n≥6do not appear in the OEIS.We have omputed that

Q
(3,0,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (13 + x)t4 +

(

34 + 6x + 2x2
)

t5 +
(

89 + 25x + 13x2 + 5x3
)

t6 +
(

233 + 90x + 58x2 + 34x3 + 14x4
)

t7 +
(

610 + 300x + 222x2 + 158x3 + 98x4 + 42x5
)

t8 +
(

1597 + 954x + 783x2 + 628x3 + 468x4 + 300x5 + 132x6
)

t9 + · · · .
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(3,0,0,0)
n,132 (0))n≥0 is sequene A001519 in the OEIS whose terms satisfy the reursion

a(n) = 3a(n− 1)− a(n− 2) with a(0) = a(1) = 1. That is, sine Q
(3,0,0,0)
132 (t, 0) = 1−2t

1−3t+t2
, it is easy tosee that for n ≥ 2,

Q
(3,0,0,0)
n,132 (0) = 3Q

(3,0,0,0)
n−1,132(0) − Q

(3,0,0,0)
n−2,132(0) (13)with Q

(3,0,0,0)
0,132 (0) = Q

(3,0,0,0)
1,132 (0) = 1.Avoidane of MMP (3, 0, 0, 0) is equivalent to avoiding the six (lassial) patterns of length 4beginning with 1 as well as the pattern 132, whih, in turn, is equivalent to avoidane of 132 and1234 simultaneously. Even though A001519 in the OEIS gives a relevant ombinatorial interpretationas the number of permutations σ ∈ Sn+1 that avoid the patterns 321 and 3412 simultaneously, ourenumeration of permutations avoiding at the same time 132 and 1234 seems to be new thus extendingthe results in Table 6.3 in [5℄.Problem 1 Can one give a ombinatorial proof of (13)?Problem 2 Do any of the known bijetions between Sn(132) and Sn(321) (see [5, Chapter 4℄) send

(132, 1234)-avoiding permutations to (321, 3412)-avoiding permutations? If not, �nd suh a bijetion.The sequene (Q
(3,0,0,0)
n,132 (x)|x)n≥4 is sequene A001871 in the OEIS, whih has the generating fun-tion 1

(1−3x+x2)2
. The nth term of this sequene ounts the number of 3412-avoiding permutationsontaining exatly one ourrene of the pattern 321. We an use the reursion (11) to prove thatthese sequenes are the same. That is,

Q
(3,0,0,0)
132 (t, x)|x = Q

(2,0,0,0)
132 (t, x)|x

t d
dt

Q
(3,0,0,0)
132 (t, 0)

d
dt

(

tQ
(2,0,0,0)
132 (t, 0)

)

=
t3

(1 − 2t)2
·
t d
dt

(

1−2t
1−3t+t2

)

d
dt

t(1−t)
1−2t

=
t4

(1 − 3t − t2)2
.We have omputed that

Q
(4,0,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (41 + x)t5 +

(

122 + 8x + 2x2
)

t6 +
(

365 + 42x + 17x2 + 5x3
)

t7 +
(

1094 + 184x + 94x2 + 44x3 + 14x4
)

t8 +
(

3281 + 731x + 431x2 + 251x3 + 126x4 + 42x5
)

t9 + · · · .The sequene (Q
(4,0,0,0)
132 (t, 0))n≥1 is A007051 in the OEIS. It is easy to ompute that

Q
(4,0,0,0)
132 (t, 0) =

1 − 3t + t2

1 − 4t + 3t2

=
1 − 3t + t2

(1 − t)(1 − 3t)

= 1 +
∑

n≥1

3n−1 + 1

2
tn.
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(4,0,0,0)
n,132 (0) = 3n−1+1

2 , whih also ounts the number of ordered trees with n− 1 edgesand height at most 4.The sequene (Q
(4,0,0,0)
132 (t, x)|x)n≥5, whose initial terms are

1, 8, 42, 184, 731, . . . ,does not appear in the OEIS. However, we an use the reursion (11) to �nd its generating funtion.That is,
Q

(4,0,0,0)
132 (t, x)|x = Q

(3,0,0,0)
132 (t, x)|x

t d
dt

Q
(4,0,0,0)
132 (t, 0)

d
dt

(

tQ
(3,0,0,0)
132 (t, 0)

)

=
t4

(1 − 3t + t2)2

t d
dt

(

1−3t+t2

1−4t+3t2

)

d
dt

t(1−2t)
1−3t+t2

=
t5

(1 − 4t + 3t2)2
.4 The funtion Q

(0,0,k,0)
132 (t, x)In this setion, we shall study the generating funtion Q

(0,0,k,0)
132 (t, x) for k ≥ 1. Fix k ≥ 1. It is easyto see that Ai(σ) will ontribute mmp(0,0,k,0)(red(Ai(σ))) to mmp(0,0,k,0)(σ), sine neither n nor anyof the elements to the right of n have any e�et on whether an element in Ai(σ) mathes the pattern

MMP (0, 0, k, 0) in σ. Similarly, Bi(σ) will ontribute mmp(0,0,k,0)(red(Bi(σ))) to mmp(0,0,k,0)(σ),sine neither n nor any of the elements to the left of n have any e�et on whether an element in Bi(σ)mathes the pattern MMP (0, 0, k, 0) in σ. Note that n will ontribute 1 to mmp(0,0,k,0) if and only if
k < i.It follows that

Q
(0,0,k,0)
n,132 (x) =

k
∑

i=1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x) + x

n
∑

i=k+1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x). (14)Note that if i ≤ k, Q

(0,0,k,0)
i−1,132 (x) = Ci−1. Thus,

Q
(0,0,k,0)
n,132 (x) =

k
∑

i=1

Ci−1Q
(0,0,k,0)
n−i,132 (x) + x

n
∑

i=k+1

Q
(0,0,k,0)
i−1,132 (x)Q

(0,0,k,0)
n−i,132 (x). (15)Multiplying both sides of (15) by tn and summing for n ≥ 1 shows that

− 1 + Q
(0,0,k,0)
132 (t, x) =

t(C0 + C1t + · · · + Ck−1t
k−1)Q

(0,0,k,0)
132 (t, x)+

txQ
(0,0,k,0)
132 (t, x)(Q

(0,0,k,0)
132 (t, x) − (C0 + C1t + · · · + Ck−1t

k−1)).



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 237Thus, we obtain the quadrati equation
0 = 1 − (−1 + (t − tx)(C0 + C1t + · · · + Ck−1t

k−1))Q
(0,0,k,0)
132 (t, x) + tx(Q

(0,0,k,0)
132 (t, x))2. (16)This implies the following theorem.Theorem 4.1 For k ≥ 1,

Q
(0,0,k,0)
132 (t, x) =

1 + (tx − t)(
∑k−1

j=0 Cjt
j) −

√

(1 + (tx − t)(
∑k−1

j=0 Cjtj))2 − 4tx

2tx
(17)

=
2

1 + (tx − t)(
∑k−1

j=0 Cjtj) +
√

(1 + (tx − t)(
∑k−1

j=0 Cjtj))2 − 4txand
Q

(0,0,k,0)
132 (t, 0) =

1

1 − t(C0 + C1t + · · · + Ck−1tk−1)
. (18)By Corollary 2.2, Q

(0,0,k,0)
132 (t, 0) is also the generating funtion of the number of Dyk paths thathave no interval of length ≥ 2k and the generating funtion of the number of rooted binary trees Tsuh that T has no node η whose left subtree has size ≥ k.4.1 Expliit formulas for Q

(0,0,k,0)
n,132 (x)|xrIt is easy to explain the highest power and the seond highest power of x that ours in Q

(0,0,k,0)
n,132 (x)for any k ≥ 1.Theorem 4.2 1. For all k ≥ 1 and n > k, the highest power of x that ours in Q

(0,0,k,0)
n,132 (x) is

xn−k, with Q
(0,0,k,0)
n,132 (x)|xn−k = Ck, and2. Q

(0,0,k,0)
n,132 (x)|xn−k−1 = Ck+1 − Ck + 2(n − k − 1)Ck−1.Proof. For (1), it is easy to see that, for any k ≥ 1, the maximum number of

MMP (0, 0, k, 0)-mathes ours in a permutation σ = σ1 · · · σn ∈ Sn(132) only when σ1 · · · σk ∈
Sk(132) and σk+1 · · · σn = (k + 1)(k + 2) · · · n. Thus, Q

(0,0,k,0)
n,132 (x)|xn−k = Ck for n ≥ k + 1.For (2), suppose that k ≥ 3, and de�ne an,k = Q

(0,0,k,0)
n,132 (x)|xn−k−1 , where n > k +1. Then, supposethat σ = σ1 · · · σn+1 ∈ Sn+1(132) is suh that mmp(0,0,k,0)(σ) = n − k. By de�nition, the numberof suh σ is an+1,k. Then, if σn+1 = n + 1, we must have mmp(0,0,k,0)(σ1 · · · σn) = n − k − 1, so wehave an,k hoies for σ1 · · · σn. If σ1 = n + 1, then mmp(0,0,k,0)(σ2 · · · σn+1) = n − k, so we have Ck−1hoies for σ2 · · · σn+1. If σn = n + 1, then σn+1 = 1 and mmp(0,0,k,0)(σ1 · · · σn−1) = n − k − 1, so wehave Ck−1 hoies for σ1 · · · σn−1. If σi = n + 1, where 2 ≤ i ≤ k, then σ1 · · · σi annot ontributeto mmp(0,0,k,0)(σ), so mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(σk+1 · · · σn+1) ≤ n − i − k < n − k − 1. If

σi = n + 1, where n − k + 1 ≤ i ≤ n − 1, then σi+1 · · · σn+1 annot ontribute to mmp(0,0,k,0)(σ), so
mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(σ1 · · · σi) ≤ i−k ≤ n−k−1. Finally if σi = n+1, where k+1 ≤ i ≤ n−k,then

mmp(0,0,k,0)(σ) = mmp(0,0,k,0)(red(σ1 · · · σi)) + mmp(0,0,k,0)(σi+1 · · · σn+1)

≤ i − k + (n + 1 − i − k) = n + 1 − 2k < n − k − 1.



238 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKThus, it follows that for n ≥ k + 1, an,k satis�es the reursion
an+1,k = an,k + 2Ck−1. (19)In general, if n = k+1, then there are Ck+1−Ck permutations in Sn(132) avoiding MMP (0, 0, k, 0),namely, those that do not have σk+1 = k + 1. Using this as the base ase, we may solve reursion (19)to obtain an,k = Ck+1 − Ck + 2(n − k − 1)Ck−1. 2Again, we an easily use Mathematia to ompute some initial terms of the generating funtion

Q
(0,0,k,0)
132 (t, x) for small k. For example, we have omputed that

Q
(0,0,1,0)
132 (t, x) = 1 + t + (1 + x)t2 +

(

1 + 3x + x2
)

t3 +
(

1 + 6x + 6x2 + x3
)

t4 +
(

1 + 10x + 20x2 + 10x3 + x4
)

t5 +
(

1 + 15x + 50x2 + 50x3 + 15x4 + x5
)

t6 +
(

1 + 21x + 105x2 + 175x3 + 105x4 + 21x5 + x6
)

t7 +
(

1 + 28x + 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)

t8 +
(

1 + 36x + 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)

t9 + · · · .It is easy to explain several of the oe�ients of Q
(0,0,1,0)
n,132 (x). That is, the following hold.Theorem 4.3 1. Q

(0,0,1,0)
n,132 (0) = 1 for n ≥ 1,2. Q

(0,0,1,0)
n,132 (x)|xn−1 = 1 for n ≥ 2,3. Q
(0,0,1,0)
n,132 (x)|x =

(

n
2

) for n ≥ 2, and4. Q
(0,0,1,0)
n,132 (x)|xn−2 =

(

n
2

) for n ≥ 3.Proof. It is easy to see that n(n−1) · · · 1 is the only permutation σ ∈ Sn(132) suh that mmp(0,0,1,0)(σ) =

0. Thus, Q
(0,0,1,0)
n,132 (0) = 1 for all n ≥ 1. Similarly, for n ≥ 2, σ = 12 · · · (n−1)n is the only permutationin Sn(132) with mmp(0,0,1,0)(σ) = n − 1 so that Q

(0,0,1,0)
n,132 (x)|xn−1 = 1 for n ≥ 2.To prove (3), let σ(i,j) = n(n − 1) · · · (j + 1)(j − 1) · · · ij(i − 1) · · · 1 for any 1 ≤ i < j ≤ n. It iseasy to see that mmp(0,0,1,0)(σ(i,j)) = 1 and that these are the only permutations σ in Sn(132) suhthat mmp(0,0,1,0)(σ) = 1. Thus, Q

(0,0,1,0)
n,132 (x)|x =

(

n
2

) for n ≥ 2.For (4), we prove by indution that Q
(0,0,1,0)
n,132 (x)|xn−2 =

(

n
2

) for n ≥ 3. The theorem holds for n =

3, 4. Now suppose that n ≥ 5 and σ ∈ Sn(132) and mmp(0,0,1,0)(σ) = n−2. Then if σn = n, it must bethe ase that mmp(0,0,1,0)(σ1 · · · σn−1) = n−3, so by indution we have (n−1
2

) hoies for σ1 · · · σn−1. If
σi = n, where 1 ≤ i ≤ n−1, then it must be the ase that σ = (n−k+1) · · · (n−1)n12 · · · (n−k), so thereare n− 1 suh permutations where σn 6= n. Thus, we have a total of (n2) with mmp(0,0,1,0)(σ) = n− 2.

2More generally, one an observe that the oe�ients of xj and xn−j−1 in Q
(0,0,1,0)
n,132 (x) are the same.This an be proved diretly from its generating funtion. That is, by Theorem 4.1,

Q
(0,0,1,0)
132 (t, x) =

1 + t(x − 1) −
√

(1 + t(x − 1))2 − 4xt

2xt
.



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 239Further, de�ne
R

(0,0,1,0)
132 (t, x) =

Q
(0,0,1,0)
132 (t, x) − 1

t
=

1 − t(x + 1) −
√

(1 + t(x − 1))2 − 4xt

2xt2
.The observed symmetry is then just the statement that R

(0,0,1,0)
132 (t, x) = R

(0,0,1,0)
132 (tx, 1/x), whih anbe easily heked. We shall give a ombinatorial proof of this symmetry in Setion 6; see the disussionof (35).We have omputed that

Q
(0,0,2,0)
132 (t, x) = 1 + t + 2t2 + (3 + 2x)t3 +

(

5 + 7x + 2x2
)

t4 +
(

8 + 21x + 11x2 + 2x3
)

t5 +
(

13 + 53x + 49x2 + 15x3 + 2x4
)

)t6 +
(

21 + 124x + 174x2 + 89x3 + 19x4 + 2x5
)

t7 +
(

34 + 273x + 546x2 + 411x3 + 141x4 + 23x5 + 2x6
)

t8 +
(

55 + 577x + 1557x2 + 1635x3 + 804x4 + 205x5 + 27x6 + 2x7
)

t9 + · · · .We then have the following proposition.Proposition 4.4 1. Q
(0,0,2,0)
n,132 (0) = Fn, where Fn is the nth Fibonai number, and2. Q

(0,0,2,0)
n,132 (x)|xn−3 = 3 + 4(n − 3).Proof. In this ase, we know that Q

(0,0,2,0)
132 (t, 0) = 1

1−t(C0+C1t) = 1
1−t−t2

, so (Q
(0,0,2,0)
n,132 (0))n≥0 is the se-quene of Fibonai numbers. This result is known [5, Table 6.1℄, sine the avoidane of MMP (0, 0, 2, 0)is equivalent to the avoidane of the patterns 123 and 213 simultaneously, so in this ase we are dealingwith the multi-avoidane of the lassial patterns 132, 123, and 213.The fat that Q

(0,0,2,0)
n,132 (x)|xn−3 = 3 + 4(n − 3) is a speial ase of Theorem 4.2. 2The sequene (Q

(0,0,2,0)
n,132 (x)|x)n≥3, whose initial terms are 2, 7, 21, 53, 124, 273, 577, . . ., does notappear in the OEIS.We have omputed that

Q
(0,0,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (9 + 5x)t4 +

(

18 + 19x + 5x2
)

t5 +
(

37 + 61x + 29x2 + 5x3
)

t6 +
(

73 + 188x + 124x2 + 39x3 + 5x4
)

t7 +

(146 + 523x + 500x2 + 207x3 + 49x4 + 5x5)t8 +

(293 + 1387x + 1795x2 + 1013x3 + 310x4 + 59x5 + 5x6)t9 + · · · .In this ase, the sequene (Q
(0,0,3,0)
n,132 (0))n≥0 whose generating funtion Q

(0,0,3,0)
132 (t, 0) = 1

1−t(1+t+2t2)is A077947 in the OEIS, whih also ounts the number of sequenes of odewords of total length nfrom the ode C = {0, 10, 110, 111}. For example, for n = 3, there are �ve sequenes of length 3that are in {0, 10, 110, 111}∗ , namely, 000,010,100,110, and 111. The basi idea of a ombinatorialexplanation of this fat is not that di�ult to present. Indeed, a permutation avoiding the patterns132 and MMP (0, 0, 3, 0) is suh that to the left of n, the largest element, one an either have noelements, one element (n − 1), two elements in inreasing order (n − 2)(n − 1), or two elements in



240 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKdereasing order (n − 1)(n − 2). We an then reursively build the odeword orresponding to thepermutation beginning with, say, 0, 10, 110 and 111, respetively, orresponding to the four ases; onethen applies the same map to the subpermutation to the right of n.The sequene (Q
(0,0,3,0)
n,132 (x)|x)n≥4, whose initial terms are 5, 19, 61, 188, 532, 1387, . . . does not appearin the OEIS.We have omputed that

Q
(0,0,4,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (28 + 14x)t5 + (62 + 56x + 14x2)t6 +

(143 + 188x + 84x2 + 14x3)t7 + (331 + 603x + 307x2 + 112x3 + 14x4)t8 +

(738 + 1907x + 1455x2 + 608x3 + 140x4 + 14x5)t9 + · · · .Here, neither the sequene (Q
(0,0,4,0)
n,132 (0))n≥1, whose generating funtion is 1

1−t(1+t+2t2+5t3)
, nor thesequene (Q

(0,0,4,0)
n,132 (x)|x)n≥5 appear in the OEIS.Unlike the situation with the generating funtions Q

(k,0,0,0)
n,132 (t, x), there does not seem to be anysimple way to extrat a simple formula for Q

(0,0,k,0)
n,132 (t, x)|x from (17).5 The funtions Q

(0,k,0,0)
132 (t, x) = Q

(0,0,0,k)
132 (t, x)In this setion, we shall ompute the generating funtions Q

(0,k,0,0)
132 (t, x) and Q

(0,0,0,k)
132 (t, x) for k ≥

1. These two generating funtions are equal, sine it follows from Lemma 1.1 that Q
(0,k,0,0)
n,132 (x) =

Q
(0,0,0,k)
n,132 (x) for all k, n ≥ 1. Thus, in this setion, we shall only onsider the generating funtions

Q
(0,k,0,0)
132 (t, x).First let k = 1. It is easy to see that Ai(σ) will ontribute mmp(0,1,0,0)(red(Ai(σ))) to mmp(0,1,0,0)(σ),sine neither n nor any of the elements to the right of n have any e�et on whether an element in Ai(σ)mathes the pattern MMP (0, 1, 0, 0) in σ. Similarly, Bi(σ) will ontribute n − i to mmp(0,1,0,0)(σ),sine the presene of n to the left of these elements guarantees that they all math the pattern

MMP (0, 1, 0, 0) in σ. Note that n does not math the pattern MMP (0, 1, 0, 0) in σ. It followsthat
Q

(0,1,0,0)
n,132 (x) =

n
∑

i=1

Q
(0,1,0,0)
i−1,132 (x)Cn−ix

n−i. (20)Multiplying both sides of (20) by tn and summing for n ≥ 1 will show that
−1 + Q

(0,1,0,0)
132 (t, x) = tQ

(0,1,0,0)
132 (t, x) C(tx).Thus,

Q
(0,1,0,0)
132 (t, x) =

1

1 − tC(tx)
,whih is the same as the generating funtion for Q

(1,0,0,0)
132 (t, x).Next we onsider the ase k > 1. Again, learly Ai(σ) will ontribute mmp(0,k,0,0)(red(Ai(σ))) to

mmp(0,k,0,0)(σ), sine neither n nor any of the elements to the right of n have any e�et on whether an



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 241element in Ai(σ) mathes the pattern MMP (0, k, 0, 0) in σ. Now if i ≥ k, then Bi(σ) will ontribute
Cn−ix

n−i to mmp(0,k,0,0)(σ), sine the presene of n and the elements of Ai(σ) guarantee that theelements of Bi(σ) all math the pattern MMP (0, k, 0, 0) in σ. However, if i < k, then Bi(σ) willontribute mmp(0,k−i,0,0)(red(Bi(σ))) to mmp(0,k,0,0)(σ), sine the presene of n and the elements of
Ai(σ) to the left of n guarantees that the elements of Bi(σ) math the pattern MMP (0, k, 0, 0) in σif and only if they math the pattern MMP (0, k − i, 0, 0) in Bi(σ). Note that n does not math thepattern MMP (0, k, 0, 0) for any k ≥ 1. It follows that

Q
(0,k,0,0)
n,132 (x) =

k−1
∑

i=1

Q
(0,k,0,0)
i−1,132 (x)Q

(0,k−i,0,0)
n−i,132 (x) +

n
∑

i=k

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i

=
k−1
∑

i=1

Ci−1Q
(0,k−i,0,0)
n−i,132 (x) +

n
∑

i=k

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i. (21)Here the last equation follows from the fat that Q
(0,k,0,0)
i−1,132 (x) = Ci−1 if i ≤ k − 1. Multiplying bothsides of (21) by tn and summing for n ≥ 1 will show that

− 1 + Q
(0,k,0,0)
132 (t, x) =

t
k−1
∑

i=1

Ci−1t
i−1Q

(0,k−i,0,0)
132 (t, x) + tC(tx)(Q

(0,k,0,0)
132 (t, x) − (C0 + C1t + · · · + Ck−2t

k−2)).Thus, we have the following theorem.Theorem 5.1
Q

(0,1,0,0)
132 (t, x) =

1

1 − tC(tx)
. (22)For k > 1,

Q
(0,k,0,0)
132 (t, x) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, x) − C(tx))

1 − tC(tx)
(23)and

Q
(0,k,0,0)
132 (t, 0) =

1 + t
∑k−2

j=0 Cjt
j(Q

(0,k−1−j,0,0)
132 (t, 0) − 1)

1 − t
. (24)



242 S. KITAEV, J. REMMEL AND M. TIEFENBRUCK5.1 Expliit formulas for Q
(0,k,0,0)
n,132 (x)|xrNote that Theorem 5.1 gives us a simple reursion for the generating funtions for the onstant termsin Q

(0,k,0,0)
n,132 (x). For example, one an ompute that

Q
(0,1,0,0)
132 (t, 0) =

1

(1 − t)
;

Q
(0,2,0,0)
132 (t, 0) =

1 − t + t2

(1 − t)2
;

Q
(0,3,0,0)
132 (t, 0) =

1 − 2t + 2t2 + t3 − t4

(1 − t)3
;

Q
(0,4,0,0)
132 (t, 0) =

1 − 3t + 4t2 − t3 + 3t4 − 5t5 + 2t6

(1 − t)4
, and

Q
(0,5,0,0)
132 (t, 0) =

1 − 4t + 7t2 − 5t3 + 4t4 + 6t5 − 21t6 + 18t7 − 5t8

(1 − t)5
.We an explain the highest oe�ient of x and the seond highest oe�ient of x in Q

(0,k,0,0)
n,132 (x)for any k ≥ 1.Theorem 5.2 1. For all k ≥ 1 and n ≥ k, the highest power of x that ours in Q

(0,k,0,0)
n,132 (x) is

xn−k, with Q
(0,k,0,0)
n,132 (x)|xn−k = CkCn−k.2. For all k ≥ 1 and n ≥ k + 1, Q

(0,k,0,0)
n,132 (x)|xn−k−1 = akCn−k where a1 = 1 and for k ≥ 2,

ak = Ck +
∑k−1

i=1 Ci−1ak−i.Proof. For (1), it is easy to see that to obtain the largest number of MMP (0, k, 0, 0)-mathes for apermutation σ ∈ Sn(132), we need only to arrange the largest k elements n, n − 1, . . . , n − k + 1 suhthat they avoid 132, followed by the elements 1, . . . , n−k under the same ondition. Thus, the highestpower of x that ours in Q
(0,k,0,0)
n,132 (x) is xn−k, and its oe�ient is CkCn−k.For (2), we know that Q
(0,1,0,0)
n,132 (x) = Q

(1,0,0,0)
n,132 (x) and we have proved that Q

(1,0,0,0)
n,132 (x)|xn−2 = Cn−1for n ≥ 2. Thus a1 = 1.Next assume by indution that for j = 1, . . . , k − 1,

Q
(j,0,0,0)
n,132 (x)|xn−j−1 = ajCn−j for n ≥ j + 1where aj is a positive integer. Then by the reursion (21), we know that

Q
(0,k,0,0)
n,132 (x)|xn−k−1 =

k−1
∑

i=1

Ci−1Q
(0,k−i,0,0)
n−i,132 (x)|xn−k−1 +

n
∑

i=k

(

Q
(0,k,0,0)
i−1,132 (x)Cn−ix

n−i
)

|xn−k−1

=

k−1
∑

i=1

Ci−1Q
(0,k−i,0,0)
n−i,132 (x)|xn−k−1 +

n
∑

i=k

Cn−iQ
(0,k,0,0)
i−1,132 (x)|xi−k−1 .
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Q

(0,k−i,0,0)
n−i,132 (x)|xn−k−1 = ak−iCn−k for n − i ≥ k − i + 1and for i = k + 1, . . . , n,

Q
(0,k,0,0)
i−1,132 (x)|xi−k−1 = CkCi−1−k for i − 1 ≥ k.Moreover, it is lear that for i = k, Q

(0,k,0,0)
k−1,132(x)|xk−k−1 = 0. Thus we have that for all n ≥ k + 1,

Q
(0,k,0,0)
n,132 (x)|xn−k−1 =

k−1
∑

i=1

Ci−1ak−iCn−k +

n
∑

i=k+1

Cn−iCkCi−1−k

= Cn−k

(

k−1
∑

i=1

Ci−1ak−i

)

+ Ck

n
∑

i=k+1

Cn−iCi−1−k

= Cn−k

(

k−1
∑

i=1

Ci−1ak−i

)

+ CkCn−k = Cn−k

(

Ck +
k−1
∑

i=1

Ci−1ak−i

)

.Thus for n ≥ k + 1, Q
(0,k,0,0)
n,132 (x)|xn−k−1 = akCn−k where ak = Ck +

∑k−1
i=1 Ci−1ak−i. 2For example,

a2 = C2 + C0a1 = 2 + 1 = 3,

a3 = C3 + C0a2 + C1a1 = 5 + 3 + 1 = 9, and
a4 = C4 + C0a3 + C1a2 + C2a1 = 14 + 9 + 3 + 2 = 28whih agrees with the series for Q

(0,2,0,0)
132 (t, x), Q

(0,3,0,0)
132 (t, x), and Q

(0,4,0,0)
132 (t, x) whih we give below.Again we an use Mathematia to ompute the �rst few terms of Q

(0,k,0,0)
132 (t, x) for small k. Sine

Q
(0,1,0,0)
132 (t, x) = Q

(1,0,0,0)
132 (t, x), we will not list that generating funtion again.We have omputed that

Q
(0,2,0,0)
132 (t, x) = 1 + t + 2t2 + (3 + 2x)t3 +

(

4 + 6x + 4x2
)

t4 +
(

5 + 12x + 15x2 + 10x3
)

t5 +
(

6 + 20x + 36x2 + 42x3 + 28x4
)

t6 +
(

7 + 30x + 70x2 + 112x3 + 126x4 + 84x5
)

t7 +
(

8 + 42x + 120x2 + 240x3 + 360x4 + 396x5 + 264x6
)

t8 +
(

9 + 56x + 189x2 + 450x3 + 825x4 + 1188x5 + 1287x6 + 858x7
)

t9 + · · · .The only permutations σ ∈ Sn(132) suh that mmp(0,2,0,0)(σ) = 0 are the identity permutationplus all the adjaent transpositions
(i, i + 1) = 12 · · · (i − 1)(i + 1)i(i + 2) · · · n,whih explains why Q

(0,2,0,0)
n,132 (0) = n for all n ≥ 1. This is a known result [5, Table 6.1℄, sine avoiding

MMP (0, 2, 0, 0) is equivalent to avoiding simultaneously the lassial patterns 321 and 231. Hene inthis ase, we are dealing with the simultaneous avoidane of the patterns 132, 321 and 231.



244 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKWe laim that (Q
(0,2,0,0)
n,132 (x)|x = (n − 1)(n − 2) for all n ≥ 3. This an be easily proved byindution. That is, Q
(0,2,0,0)
3,132 (x)|x = 2, so our formula holds for n = 3. Now suppose that n ≥ 4 and

σ = σ1 · · · σn ∈ Sn(132) is suh that mmp(0,2,0,0)(σ) = 1. We laim there are only three possibilitiesfor the position of n in σ. That is, it annot be that σi = n for 2 ≤ i ≤ n − 2, sine then both σn and
σn−1 would math MMP (0, 2, 0, 0) in σ. Thus, it must be the ase that σn = n, σn−1 = n, or σ1 = n.Clearly, if σn = n, then we must have that mmp(0,2,0,0)(σ1 · · · σn−1) = 1, so there are (n − 2)(n − 3)hoies of σ1 · · · σn−1 by indution. If σn−1 = n, then σn = 1, so σn will math MMP (0, 2, 0, 0) in σ.Thus, it must be the ase that mmp(0,2,0,0)(red(σ1 · · · σn−2)) = 0, whih means that we have n−2 hoiesfor σ1 · · · σn−2 in this ase. Finally, if σ1 = n, then we must have that mmp(0,1,0,0)(red(σ2 · · · σn)) = 1.Using the fat that Q

(0,1,0,0)
132 (t, x) = Q

(1,0,0,0)
132 (t, x) and that Q

(1,0,0,0)
n,132 (x)|x = n− 1, it follows that thereare n − 2 hoies for σ2 · · · σn in this ase. Thus, it follows that

Q
(0,2,0,0)
n,132 (x)|x = (n − 2)(n − 3) + 2(n − 2) = (n − 1)(n − 2).The sequene (Q

(0,2,0,0)
n,132 (x)|xn−3)n≥3 is sequene A120589 in the OEIS whih has no listed ombi-natorial interpretation so that we have give a ombinatorial interpretation to this sequene.We have omputed that

Q
(0,3,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (9 + 5x)t4 +

(

14 + 18x + 10x2)
)

t5+
(

20 + 42x + 45x2 + 25x3
)

t6 +
(

27 + 80x + 126x2 + 126x3 + 70x4
)

t7+
(

35 + 135x + 280x2 + 392x3 + 378x4 + 210x5
)

t8+
(

44 + 210x + 540x2 + 960x3 + 1260x4 + 1088x5 + 660x6
)

t9 + · · ·and
Q

(0,4,0,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (28 + 14x)t5 +

(

48 + 56x + 28x2
)

t6+
(

75 + 144x + 140x2 + 70x3
)

t7 +
(

110 + 300x + 432x2 + 392x3 + 196x4
)

t8+
(

154 + 550x + 1050x2 + 1344x3 + 1176x4 + 588x5
)

t9 + · · · .The sequenes (Q
(0,3,0,0)
n,132 (0))n≥1, (Q

(0,3,0,0)
n,132 (x)|x)n≥4, (Q

(0,4,0,0)
n,132 (0))n≥1, and

(Q
(0,4,0,0)
n,132 (x)|x)n≥5 do not appear in the OEIS.We have now onsidered all the possibilities for Q

(a,b,c,d)
132 (t, x) for a, b, c, d ∈ N where all but one ofthe parameters a, b, c, d are zero. There are several alternatives for further study. One is to onsider

Q
(a,b,c,d)
132 (t, x) for a, b, c, d ∈ N where at least two of the parameters a, b, c, d are non-zero. This will bethe subjet of [7, 8℄. A seond alternative is to allow some of the parameters to be equal to ∅. In thenext two setions, we shall give two simple examples of this type of alternative.6 The funtion Q

(k,0,∅,0)
132 (t, x)In this setion, we shall onsider the generating funtion Q

(k,0,∅,0)
132 (t, x), where k ∈ N ∪ {∅}. Given apermutation σ = σ1 · · · σn ∈ Sn, we say that σj is a right-to-left maximum (left-to-right minimum) of
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σ if σj > σi for all i > j (σj < σi for all i < j). We let RLmax(σ) denote the number of right-to-leftmaxima of σ and LRmin(σ) denote the number of left-to-right minima of σ. One an view the pattern
MMP (k, 0, ∅, 0) as a generalization of the number of left-to-right minima statisti (whih orrespondsto the ase k = 0).First we ompute the generating funtion for Q

(∅,0,∅,0)
n,132 (x), whih orresponds to the elements thatare both left-to-right minima and right-to-left maxima. Consider the permutations σ ∈ Sn(132) where

σ1 = n. Clearly suh permutations ontribute xQ
(∅,0,∅,0)
n−1,132(x) to Q

(∅,0,∅,0)
n,132 (x). For i > 1, it is easy tosee that Ai(σ) will ontribute nothing to mmp(∅,0,∅,0)(σ), sine the presene of n to the right of theseelements ensures that no point in Ai(σ) mathes the pattern MMP (∅, 0, ∅, 0). Similarly, Bi(σ) willontribute mmp(∅,0,∅,0)(red(Bi(σ))) to mmp(∅,0,∅,0)(σ), sine neither n nor any of the elements to theleft of n have any e�et on whether an element in Bi(σ) mathes the pattern MMP (∅, 0, ∅, 0) in σ.Thus,

Q
(∅,0,∅,0)
n,132 (x) = xQ

(∅,0,∅,0)
n−1,132(x) +

n
∑

i=2

Ci−1Q
(∅,0,∅,0)
n−i,132 (x). (25)Multiplying both sides of (25) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(∅,0,∅,0)
132 (t, x) = txQ

(∅,0,∅,0)
132 (t, x) + tQ

(∅,0,∅,0)
132 (t, x) (C(t) − 1).Thus, we have the following theorem.Theorem 6.1

Q
(∅,0,∅,0)
132 (t, x) =

1

1 − tx + t − tC(t)
(26)and

Q
(∅,0,∅,0)
132 (t, 0) =

1

1 + t − tC(t)
. (27)Next we ompute the generating funtion for Q

(0,0,∅,0)
n,132 (x). First onsider the permutations σ ∈

S
(1)
n (132). Clearly suh permutations ontribute xQ

(0,0,∅,0)
n−1,132(x) to Q

(0,0,∅,0)
n,132 (x). For i > 1, it is easy tosee that Ai(σ) will ontribute mmp(0,0,∅,0)(red(Ai(σ))) to mmp(0,0,∅,0)(σ), sine neither n nor any ofthe elements to the right of n have any e�et on whether an element in Ai(σ) mathes the pattern

MMP (0, 0, ∅, 0) in σ. Similarly, Bi(σ) will ontribute mmp(0,0,∅,0)(red(Bi(σ))) to mmp(0,0,∅,0)(σ),sine neither n nor any of the elements to the left of n have any e�et on whether an element in Bi(σ)mathes the pattern MMP (0, 0, ∅, 0) in σ. Thus,
Q

(0,0,∅,0)
n,132 (x) = xQ

(0,0,∅,0)
n−1,132(x) +

n
∑

i=2

Q
(0,0,∅,0)
i−1,132 (x)Q

(0,0,∅,0)
n−i,132 (x). (28)Multiplying both sides of (28) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(0,0,∅,0)
132 (t, x) = txQ

(0,0,∅,0)
132 (t, x) + tQ

(0,0,∅,0)
132 (t, x) (Q

(0,0,∅,0)
132 (t, x) − 1),so

0 = 1 + Q
(0,0,∅,0)
132 (t, x)(tx − t − 1) + t(Q

(0,0,∅,0)
132 (t, x))2.
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Q

(0,0,∅,0)
132 (t, x) =

(1 + t − tx) −
√

(1 + t − tx)2 − 4t

2t
.Next we ompute a reursion for Q

(k,0,∅,0)
n,132 (x), where k ≥ 1. It is lear that n an never maththe pattern MMP (k, 0, ∅, 0) for k ≥ 1 in any σ ∈ Sn(132). For i ≥ 1, it is easy to see that Ai(σ)will ontribute mmp(k−1,0,∅,0)(red(Ai(σ))) to mmp(k,0,∅,0)(σ), sine none of the elements to the rightof n have any e�et on whether an element in Ai(σ) mathes the pattern MMP (k, 0, ∅, 0) in σ andthe presene of n ensures that an element in Ai(σ) mathes MMP (k, 0, ∅, 0) in σ if and only if itmathes MMP (k − 1, 0, ∅, 0) in Ai(σ). Similarly, Bi(σ) will ontribute mmp(k,0,∅,0)(red(Bi(σ))) to

mmp(k,0,∅,0)(σ), sine neither n nor any of the elements to the left of n have any e�et on whether anelement in Bi(σ) mathes the pattern MMP (k, 0, ∅, 0) in σ. Thus,
Q

(k,0,∅,0)
n,132 (x) =

n
∑

i=1

Q
(k−1,0,∅,0)
i−1,132 (x)Q

(k,0,∅,0)
n−i,132 (x). (29)Multiplying both sides of (29) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(0,0,∅,0)
132 (t, x) = tQ

(k−1,0,∅,0)
132 (t, x) Q

(k,0,∅,0)
132 (t, x).Thus, we have the following theorem.Theorem 6.2

Q
(0,0,∅,0)
132 (t, x) =

(1 + t − tx) −
√

(1 + t − tx)2 − 4t

2t
. (30)For k ≥ 1,

Q
(k,0,∅,0)
132 (t, x) =

1

1 − tQ
(k−1,0,∅,0)
132 (t, x)

. (31)Thus,
Q

(0,0,∅,0)
132 (t, 0) = 1and for k ≥ 1,

Q
(k,0,∅,0)
132 (t, 0) =

1

1 − tQ
(k−1,0,∅,0)
132 (t, 0)

. (32)6.1 Expliit formulas for Q
(k,0,∅,0)
n,132 (x)|xrWe have omputed that

Q
(∅,0,∅,0)
132 (t, x) = 1 + xt +

(

1 + x2
)

t2 +
(

2 + 2x + x3
)

t3 +
(

6 + 4x + 3x2 + x4
)

t4 +
(

18 + 13x + 6x2 + 4x3 + x5
)

t5 +
(

57 + 40x + 21x2 + 8x3 + 5x4 + x6
)

t6 +
(

186 + 130x + 66x2 + 30x3 + 10x4 + 6x5 + x7
)

t7 +
(

622 + 432x + 220x2 + 96x3 + 40x4 + 12x5 + 7x6 + x8
)

t8 +
(

2120 + 1466x + 744x2 + 328x3 + 130x4 + 51x5 + 14x6 + 8x7 + x9
)

t9 + · · · .
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(∅,0,∅,0)
n,132 (x) is xn, whih omes from the permutation n(n −

1) · · · 21. It is easy to see that Q
(∅,0,∅,0)
n,132 (x)|xn−1 = 0. That is, suppose σ = σ1 · · · σn ∈ Sn(132) and

mmp(∅,0,∅,0)(σ) = n−1. It an not be the ase that σi = n, where i ≥ 2, sine in suh a situation, none of
σ1, . . . , σi would math MMP (∅, 0, ∅, 0) in σ. Thus, it must be the ase that σ1 = n. But then it mustbe that ase that mmp(∅,0,∅,0)(σ2 · · · σn) = n−1, whih would mean that σ2 · · · σn = (n−1)(n−2) · · · 21.But then σ = n(n − 1) · · · 21 and mmp(∅,0,∅,0)(σ) = n, whih ontrats our hoie of σ. Thus, therean be no suh σ. Similarly, the oe�ient of xn−2 in Q

(∅,0,∅,0)
n,132 (x) is n − 1, whih omes from thepermutations n(n − 1) · · · (i + 2)i(i + 1)(i − 1) · · · 21 for i = 1, . . . , n − 1.The sequene (Q

(∅,0,∅,0)
n,132 (0))n≥1 is the Fine numbers (A000957 in the OEIS). The Fine numbers

(Fn)n≥0 an be de�ned by the generating funtion
F(t) =

∑

n≥0

Fntn =
1 −

√
1 − 4t

3t −
√

1 − 4t
.It is straightforward to verify that

1 −
√

1 − 4t

3t −
√

1 − 4t
· 1 +

√
1 − 4t

1 +
√

1 − 4t
=

1

1 + t − tC(t)
.

Fn ounts the number of 2-Motzkin paths with no level steps at height 0; see [2, 3℄. Here, a Motzkinpath is a lattie path starting at (0, 0) and ending at (n, 0) that is formed by three types of steps,up-steps (1, 1), level steps (1, 0), and down steps (1,−1), and never goes below the x-axis. A c-Motzkinpath is a Motzkin path where the level steps an be olored with any of c olors. Fn also ounts thenumber of ordered rooted trees with n edges that have root of even degree.Problem 3 Find simple bijetive proofs of the fats that the number of σ ∈ Sn(132) suh that
mmp(∅,0,∅,0)(σ) = 0 equals the number of 2-Motzkin paths with no level steps at height 0 and that thenumber of σ ∈ Sn(132) suh that mmp(∅,0,∅,0)(σ) = 0 equals the number of ordered rooted trees with
n-edges that have root of even degree.The sequene (Q

(∅,0,∅,0)
n,132 (x)|x)n≥1 is sequene A065601 in the OEIS, whih ounts the number ofDyk paths of length 2n with exatly one hill. A hill in a Dyk path is an up-step that starts on the

x-axis and that is immediately followed by a down-step.Next we onsider the onstant term and the oe�ient of x in Q
(k,0,∅,0)
n,132 (x) for k ≥ 1.Proposition 6.3 For all k ≥ 1,

Q
(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0).Proof. Note that Q

(1,0,∅,0)
132 (t, 0) = 1

1−t
= Q

(1,0,0,0)
132 (t, 0). If we ompare the reursions (32) and (8), wesee that we have that Q

(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0) for all k ≥ 1. This fat is easy to see diretly.That is, suppose that σ ∈ Sn(132) has a MMP (k, 0, 0, 0)-math. Then it is easy to see that if i isthe smallest t suh that σt mathes MMP (k, 0, 0, 0) in σ, then there an be no j < i with σj < σibeause otherwise, σj would math MMP (k, 0, 0, 0). That is, σi is also a MMP (k, 0, ∅, 0)-math.



248 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKThus, if σ has a MMP (k, 0, 0, 0)-math, then it also has a MMP (k, 0, ∅, 0)-math. The onverse ofthis statement is trivial. Hene the number of σ ∈ Sn(132) with no MMP (k, 0, 0, 0)-mathes equalsthe number of σ ∈ Sn(132) with no MMP (k, 0, ∅, 0)-mathes. 2The reursion (31) has the same form as the reursion (6). Thus, we an use the same method ofproof that we did to establish the reursion (11) to prove that
Q

(k,0,∅,0)
132 (t, x)|x = Q

(k−1,0,∅,0)
132 (t, x)|x

t d
dt

Q
(k,0,∅,0)
132 (t, 0)

d
dt

tQ
(k−1,0,∅,0)
132 (t, 0)

. (33)For example, we know that
Q

(1,0,∅,0)
132 (t, x)|x = Q

(0,0,1,0)
132 (t, x)|x =

∑

n≥2

(

n

2

)

tn =
t2

(1 − t)3
. (34)Sine Q

(k,0,∅,0)
132 (t, 0) = Q

(k,0,0,0)
132 (t, 0) for all k ≥ 1, one an use (33) and Mathematia to show that

Q
(2,0,∅,0)
132 (t, x)|x =

t3

(1 − t)(1 − 2t)2
,

Q
(3,0,∅,0)
132 (t, x)|x =

t4

(1 − t)(1 − 3t + t2)2
,

Q
(4,0,∅,0)
132 (t, x)|x =

t5

(1 − t)3(1 − 3t)2
, and

Q
(5,0,∅,0)
132 (t, x)|x =

t6

(1 − t)(1 − 5t + 6t2 − t3)2
.We also have the following proposition onerning the oe�ient of the highest power of x in

Q
(k,0,∅,0)
n,132 (x).Proposition 6.4 For all k ≥ 1, the highest power of x appearing in Q

(k,0,∅,0)
n,132 (x) is xn−k, and for all

n ≥ k, Q
(k,0,∅,0)
n,132 (x)|xn−k = 1.Proof. It is easy to see that for any k ≥ 1, the permutation σ ∈ Sn(132) with the maximal number of

MMP (k, 0, ∅, 0)-mathes for n ≥ k + 1, will be of the form (n− k)(n− k− 1) · · · 21(n− k + 1)(n− k +

2) · · · n. Thus, the highest power of x that ours in Q
(k,0,∅,0)
n,132 (x)is xn−k whih appears with oe�ient1. 2Using Theorem 6.2, one an ompute that

Q
(0,0,∅,0)
132 (t, x) = 1 + xt + x(1 + x)t2 + x

(

1 + 3x + x2
)

t3 + x
(

1 + 6x + 6x2 + x3
)

t4 +
(

1 + 10x + 20x2 + 10x3 + x4
)

t5 + x
(

1 + 15x + 50x2 + 50x3 + 15x4 + x5
)

t6 +

x
(

1 + 21x + 105x2 + 175x3 + 105x4 + 21x5 + x6
)

t7 +

x
(

1 + 28x + 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)

t8 +

x
(

1 + 36x + 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)

t9 + · · · .
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(0,0,∅,0)
132 (t, x) to Q

(0,0,1,0)
132 (t, x), we see that for n ≥ 1,
Q

(0,0,∅,0)
n,132 (x) = xQ

(0,0,1,0)
n,132 (x). (35)Note the Q

(0,0,∅,0)
n,132 (x) has an obvious symmetry property. That is, the following holds.Theorem 6.5 For all n ≥ 1,

xn+1Q
(0,0,∅,0)
n,132

(

1

x

)

= Q
(0,0,∅,0)
n,132 (x).Proof. For σ ∈ Sn, de�ne the statisti non-LRmin(σ) = n−LRmin(σ). Sine the statisti mmp(0,0,∅,0)is the same as the LRmin statisti and the statisti mmp(0,0,1,0) is the same as the non-LRmin statisti,Theorem 6.5 shows that the statistis LRmin and 1 + non-LRmin are equidistributed on 132-avoidingpermutations. In fat, it proves a more general laim, namely that on Sn(132), the joint distribution ofthe pair (mmp(0,0,∅,0)−1,mmp(0,0,1,0)) is the same as the distribution of (mmp(0,0,1,0),mmp(0,0,∅,0)−1),whih often is not the ase but is here beause the sum mmp(0,0,∅,0)(σ) + mmp(0,0,1,0)(σ) equals thelength of the permutation σ. That is, if we let

Rn(x, y) =
∑

σ∈Sn(132)

xmmp(0,0,∅,0)(σ)ymmp(0,0,1,0)(σ), (36)then the theorem shows that yRn(x, y) is symmetri in x and y for all n.We shall sketh a ombinatorial proof of this fat. First we onstrut a bijetion T from Sn(132)onto Sn(123) that will make the fat that yRn(x, y) is symmetri apparent. If σ = σ1 · · · σk ∈ Sk and
τ = τ1 · · · τℓ ∈ Sℓ, then we let

σ ⊕ τ = σ1 · · · σk(k + τ1) · · · (k + τℓ)and
σ ⊖ τ = (ℓ + σ1) · · · (ℓ + σk)τ1 · · · τℓ.Then ⋃n Sn(132) is reursively generated by starting with the permutation 1 and losing under theoperations of σ ⊖ τ and σ ⊕ 1. Then we an de�ne a reursive bijetion T :

⋃

n Sn(132) → ⋃

n Sn(123)by letting T (1) = 1, T (σ ⊖ τ) = T (σ) ⊖ T (τ), and T (σ ⊕ 1) = X(T (σ)), where X(σ) is onstrutedfrom σ as follows.Take the permutation σ ∈ Sn(123) and �x the positions and values of the left-to-right minima. Ap-pend one position to the end of σ, and renumber the non-left-to-right minima in dereasing order. Forexample, if σ = 4762531, then 4, 2, and 1 are the left-to-right minima. After �xing those positions andvalues and appending one position, the permutation looks like 4xx2xx1x. Then we �ll in the xs with8, 7, 6, 5, 3, in that order, to obtain 48726513. The map X is essentially based on the Simion-Shmidtbijetion desribed in [5, Chapter 4℄.It is straightforward to prove by indution that if T (σ) = τ , then σj mathes the pattern MMP (0, 0, ∅, 0)



250 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKin σ if and only if τj mathes the pattern MMP (0, 0, ∅, 0) in τ . That is, the map T preserves left-to-right minima. Note that if σj does not math the pattern MMP (0, 0, ∅, 0) in σ, then it must maththe pattern MMP (0, 0, 1, 0) in σ. Thus, it follows that
Rn(x, y) =

∑

σ∈Sn(132)

xmmp(0,0,∅,0)(σ)ymmp(0,0,1,0)(σ)

=
∑

σ∈Sn(123)

xLRmin(σ)ynon-LRmin(σ).Next observe that speifying the left-to-right minima of a permutation σ ∈ Sn(123) ompletelydetermines σ. That is, if σi1 > σi2 > · · · > σik are the left-to-right minima of σ, where 1 = i1 <
i2 < · · · < ik ≤ n, then the remaining elements must be plaed in dereasing order, as in the map X,sine any pair that are not dereasing will form a 123-pattern with a previous left-to-right minimum.This means that X : Sn(123) → Sn+1(123) is one-to-one, and sine LRmin(X(σ)) = LRmin(σ) andnon-LRmin(X(σ)) = 1 + non-LRmin(σ), it follows that

yRn(x, y) =
∑

σ∈Sn(123)

xLRmin(X(σ))ynon-LRmin(X(σ)).But it is easy to see that for any permutation X(σ), reversing and then omplementing X(σ), whihrotates the graph of X(σ) by 180◦ around its enter, produes a permutation of the form X(τ) for some
τ ∈ Sn(123) suh that LRmin(X(σ)) = non-LRmin(X(τ)) and non-LRmin(X(σ)) = LRmin(X(τ)).Thus,

∑

σ∈Sn(123)

xLRmin(X(σ))ynon-LRmin(X(σ))is symmetri in x and y. Hene, yRn(x, y) is symmetri in x and y. Thus, if r and c are the reverseand omplement maps, respetively, then Y : Sn(132) → Sn(132) given by Y (σ) = T−1X−1rcXT (σ)is a bijetion that swaps the statistis mmp(0, 0, ∅, 0) − 1 and mmp(0, 0, 1, 0). 2We have omputed that
Q

(1,0,∅,0)
132 (t, x) = 1 + t + (1 + x)t2 +

(

1 + 3x + x2
)

t3 +
(

1 + 6x + 6x2 + x3
)

t4 +
(

1 + 10x + 20x2 + 10x3 + x4
)

t5 +
(

1 + 15x + 50x2 + 50x3 + 15x4 + x5
)

t6 +
(

1 + 21x + 105x2 + 175x3 + 105x4 + 21x5 + x6
)

t7 +
(

1 + 28x + 196x2 + 490x3 + 490x4 + 196x5 + 28x6 + x7
)

t8 +
(

1 + 36x + 336x2 + 1176x3 + 1764x4 + 1176x5 + 336x6 + 36x7 + x8
)

t9 + · · · .One an observe that Q
(1,0,∅,0)
132 (t, x) = Q

(0,0,1,0)
132 (t, x). We provide here a ombinatorial proof of thisfat. Atually, we will prove a stronger statement that we reord as the following theorem.Theorem 6.6 The two pairs of statistis (MMP (1, 0, ∅, 0),MMP (0, 0, 1, 0)) and

(MMP (0, 0, 1, 0),MMP (1, 0, ∅, 0)) have the same joint distributions on Sn(132).



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 251Proof. We will onstrut a map ϕ on ∪nSn(132), reursively interhanging ourrenes of the involvedpatterns. The base ase, n = 1, obviously holds: ϕ(1) := 1 and neither of the patterns our in 1.Assume that the laim holds for 132-avoiding permutations of length less than n, and onsider apermutation σ ∈ S
(i)
n for some i. Consider two ases.Case 1. i = 1. In this ase, we an de�ne ϕ(π) := nϕ(Bi(σ)). Sine n is neither an ourrene of

MMP (1, 0, ∅, 0) nor an ourrene of MMP (0, 0, 1, 0), we get the desired property by the indutionhypothesis.Case 2. i > 1. Note that n is an ourrene of the pattern MMP (0, 0, 1, 0), and beause of n, eahleft-to-right minimum in Ai(σ) is atually an ourrene of the pattern MMP (1, 0, ∅, 0). Further, eahnon-left-to-right minimum in Ai(σ) is obviously an ourrene of the pattern MMP (0, 0, 1, 0). If i = n,we let ϕ(σ) := Y (red(Ai(σ)))⊕1, where Y is as de�ned in the proof of Theorem 6.5, and for 1 < i < n,we let ϕ(σ) := (Y (red(Ai(σ))) ⊕ 1) ⊖ ϕ(Bi(σ)). Indeed, ϕ(Bi(σ)) will interhange the ourrenes ofthe patterns by the indution hypothesis. Also, as in the proof of Theorem 6.5, Y (red(Ai(σ)))⊕ 1 willexhange the number of ourrenes of the patterns in Ai(σ)n. 2We have omputed that
Q

(2,0,∅,0)
132 (t, x) = 1 + t + 2t2 + (4 + x)t3 +

(

8 + 5x + x2
)

t4+
(

16 + 17x + 8x2 + x3
)

t5 +
(

32 + 49x + 38x2 + 12x3 + x4
)

t6+
(

64 + 129x + 141x2 + 77x3 + 17x4 + x5
)

t7+
(

128 + 321x + 453x2 + 361x3 + 143x4 + 23x5 + x6
)

t8+
(

256 + 769x + 1326x2 + 1399x3 + 834x4 + 247x5 + 30x6 + x7
)

t9 + · · · .The sequene (Q
(2,0,∅,0)
n,132 (x)|x)n≥2 is sequene A000337 in the OEIS, whose nth term is

(n − 1)2n + 1. Thus, Q
(2,0,∅,0)
n,132 (x)|x = (n − 3)2n−2 + 1 for n ≥ 2.We have omputed that

Q
(3,0,∅,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (13 + x)t4 +

(

34 + 7x + x2
)

t5+
(

89 + 32x + 10x2 + x3
)

t6 +
(

233 + 122x + 59x2 + 14x3 + x4
)

t7+
(

610 + 422x + 272x2 + 106x3 + 19x4 + x5
)

t8+
(

1597 + 1376x + 1090x2 + 591x3 + 182x4 + 25x5 + x6
)

t9 + · · · ,

Q
(4,0,∅,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (41 + x)t5 +

(

122 + 9x + x2
)

t6+
(

365 + 51x + 12x2 + x3
)

t7 +
(

1094 + 235x + 84x2 + 16x3 + x4
)

t8+
(

3281 + 966x + 454x2 + 139x3 + 21x4 + x5
)

t9 + · · · , and
Q

(5,0,∅,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + (131 + x)t6 +

(

417 + 11x + x2
)

t7+
(

1341 + 74x + 14x2 + x3
)

t8 +
(

4334 + 396x + 113x2 + 18x3 + x4
)

t9 + · · · .



252 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKThe seond highest power of x that ours in Q
(k,0,∅,0)
n,132 (x) is xn−k−1. Our next result will show that

Q
(k,0,∅,0)
n,132 (x)|xn−k−1 has a regular behavior for large enough n. That is, we have the following theorem.Theorem 6.7 For n ≥ 3 and k ≥ 1,

Q
(k,0,∅,0)
n+k−1,132|xn−2 = 2(k − 1) +

(

n

2

)

. (37)Proof. Note that Q
(1,0,∅,0)
132 (t, x) = Q

(0,0,1,0)
132 (t, x) and by Theorem 4.3, we have that

Q
(0,0,1,0)
n,132 (x)|xn−2 =

(

n
2

) for n ≥ 3. Thus, the theorem holds for k = 1.By indution, assume that Q
(k,0,∅,0)
n+k−1,132|xn−2 = 2(k − 1) +

(

n
2

). We know by (29) that
Q

(k+1,0,∅,0)
n+k,132 (x) =

n+k
∑

i=1

Q
(k,0,∅,0)
i−1,132 (x)Q

(k+1,0,∅,0)
n+k−i,132 (x). (38)Note that for 2 ≤ i ≤ n − k − 2, the highest oe�ient of x that appears in Q

(k+1,0,∅,0)
n+k−i,132 (x) is

xn+k−i−(k+1) = xn−i−1 . However the highest oe�ient of x in Q
(k,0,∅,0)
i−1,132 (x) is xi−2 so that theonly terms on the RHS of (38) that an ontribute to the oe�ient of xn−2 are i = 1, i = n + k − 1,and i = n + k. By Proposition 6.4, we know that

Q
(k+1,0,∅,0)
n+k−1,132(x)|xn−2 = 1 = Q

(k,0,∅,0)
n+k−2,132(x)|xn−2 ,so the i = 1 and i = n + k − 1 terms in (38) ontribute 2 to Q

(k+1,0,∅,0)
n+k,132 (x)|xn−2 . Now the i = n + kterm in (38) ontributes

Q
(k,0,∅,0)
n+k−1,132(x)|xn−2 = 2(k − 1) +

(

n

2

)to Q
(k+1,0,∅,0)
n+k,132 (x)|xn−2 . Thus,

Q
(k+1,0,∅,0)
n+k,132 (x)|xn−2 = 2k +

(

n

2

)

.

2The sequenes (Q
(3,0,∅,0)
n,132 (x)|x)n≥4, (Q

(4,0,∅,0)
n,132 (x)|x)n≥5, and (Q

(5,0,∅,0)
n,132 (x)|x)n≥5 do not appear in theOEIS.7 The funtion Q

(∅,0,k,0)
132 (t, x)In this setion, we shall ompute Q

(∅,0,k,0)
132 (t, x) for k ≥ 0. First we ompute the generating funtionfor Q

(∅,0,0,0)
n,132 (x). Observe that n will always math the pattern MMP (∅, 0, 0, 0) in any σ ∈ Sn. For

i ≥ 1, it is easy to see that Ai(σ) will ontribute nothing to mmp(∅,0,0,0)(σ), sine the presene of nto the right of an element in Ai(σ) ensures that it does not math the pattern MMP (∅, 0, 0, 0) in
σ. Similarly, Bi(σ) will ontribute mmp(∅,0,0,0)(red(Bi(σ))) to mmp(∅,0,0,0)(σ), sine neither n nor any



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 253of the elements to the left of n have any e�et on whether an element in Bi(σ) mathes the pattern
MMP (∅, 0, 0, 0) in σ. Thus,

Q
(∅,0,0,0)
n,132 (x) = x

n
∑

i=1

Ci−1Q
(∅,0,0,0)
n−i,132 (x). (39)Multiplying both sides of (39) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(∅,0,0,0)
132 (t, x) = txC(t) Q

(∅,0,0,0)
132 (t, x),so

Q
(∅,0,0,0)
132 (t, x) =

1

1 − txC(t)
.Next suppose that k ≥ 1. In this ase n in σ ∈ S

(i)
n (132) will math the pattern MMP (∅, 0, k, 0) in

σ if and only if i > k. For i ≥ 1, it is easy to see that Ai(σ) will ontribute nothing to mmp(∅,0,k,0)(σ),sine the presene of n to the right ensures that none of these elements will math the pattern
MMP (∅, 0, k, 0) in σ. Similarly, Bi(σ) will ontribute mmp(∅,0,k,0)(red(Bi(σ))) to mmp(∅,0,k,0)(σ),sine neither n nor any of the elements to the left of n have any e�et on whether an element in Bi(σ)mathes the pattern MMP (∅, 0, k, 0) in σ. Thus,

Q
(∅,0,k,0)
n,132 (x) =

k
∑

i=1

Ci−1Q
(∅,0,k,0)
n−i,132 (x) + x

n
∑

i=k+1

Ci−1Q
(∅,0,k,0)
n−i,132 (x). (40)Multiplying both sides of (40) by tn and summing over all n ≥ 1, we obtain that

−1 + Q
(∅,0,k,0)
132 (t, x) = t(

k−1
∑

j=0

Cjt
j)Q

(∅,0,k,0)
132 (t, x) + xtQ

(∅,0,k,0)
132 (C(t) −

k−1
∑

j=0

Cjt
j).Thus, we have the following theorem.Theorem 7.1

Q
(∅,0,0,0)
132 (t, x) =

1

1 − txC(t)
. (41)For k ≥ 1,

Q
(∅,0,k,0)
132 (t, x) =

1

1 − txC(t) − t(1 − x)(
∑k−1

j=0 Cjtj)
(42)and

Q
(∅,0,k,0)
132 (t, 0) =

1

1 − t(
∑k−1

j=0 Cjtj)
. (43)



254 S. KITAEV, J. REMMEL AND M. TIEFENBRUCK7.1 Expliit formulas for Q
(∅,0,k,0)
n,132 (x)|xrWe have seen the onstant terms Q
(∅,0,k,0)
n132 (0) previously. That is, we have the following proposition.Proposition 7.2 Q

(∅,0,k,0)
132 (t, 0) = Q(0,0,k,0)(t, 0) for all k ≥ 1.Proof. The proposition follows immediately from Theorems 4.1 and 7.1. That is, we have

Q
(0,0,k,0)
132 (t, 0) =

1

1 − t(
∑k−1

j=0 Cjtj)
= Q

(∅,0,k,0)
132 (t, 0).This fat is easy to see diretly. That is, suppose that σ = σ1 · · · σn ∈ Sn(132) and σ ontains a

MMP (0, 0, k, 0)-math. It is easy to see that if i is the largest suh that σi mathes MMP (0, 0, k, 0),then there an be no j > i with σj > σi beause otherwise, σj would math MMP (0, 0, k, 0). Thus,if σ has a MMP (0, 0, k, 0)-math, then it also has a MMP (∅, 0, k, 0)-math. Again, the onverse istrivial. Hene the number of σ ∈ Sn(132) with no MMP (0, 0, k, 0)-mathes equals the number of
σ ∈ Sn(132) with no MMP (∅, 0, k, 0)-mathes. 2We have omputed that

Q
(∅,0,0,0)
132 (t, x) = 1 + xt +

(

x + x2
)

t2 +
(

2x + 2x2 + x3
)

t3 +
(

5x + 5x2 + 3x3 + x4
)

t4 +
(

14x + 14x2 + 9x3 + 4x4 + x5
)

t5 +
(

42x + 42x2 + 28x3 + 14x4 + 5x5 + x6
)

t6 +
(

132x + 132x2 + 90x3 + 48x4 + 20x5 + 6x6 + x7
)

t7 +
(

429x + 429x2 + 297x3 + 165x4 + 75x5 + 27x6 + 7x7 + x8
)

t8 +
(

1430x + 1430x2 + 1001x3 + 572x4 + 275x5 + 110x6 + 35x7 + 8x8 + x9
)

t9 + · · · .Reall that Q
(1,0,0,0)
132 (t, x) = 1

1−tC(tx) , so Q
(1,0,0,0)
132 (tx, 1

x
) = Q

(∅,0,0,0)
132 (t, x). This an easily be ex-plained by the fat that every σi, 1 ≤ i ≤ n, mathes either MMP (1, 0, 0, 0) or MMP (∅, 0, 0, 0).We have omputed that

Q
(∅,0,1,0)
132 (t, x) = 1 + t + (1 + x)t2 + (1 + 4x)t3 +

(

1 + 12x + x2
)

t4 +
(

1 + 34x + 7x2
)

t5 +
(

1 + 98x + 32x2 + x3
)

t6 +
(

1 + 294x + 124x2 + 10x3
)

t7 +
(

1 + 919x + 448x2 + 61x3 + x4
)

t8 +
(

1 + 2974x + 1576x2 + 298x3 + 13x4
)

t9 + · · · .In this ase, it is easy to see that the only σ ∈ Sn(132) that avoids the pattern MMP (∅, 0, 1, 0) isthe stritly dereasing permutation. Thus, Q
(∅,0,1,0)
n,132 (0) = 1 for all n ≥ 1.It is also easy to see that the permutation that maximizes the number of mathes of MMP (∅, 0, 1, 0)in S2n(132) is (2n − 1)(2n)(2n − 3)(2n − 2) · · · 12, whih explains why the highest power of x in

Q
(∅,0,1,0)
2n,132 (x) is xn, whih has oe�ient 1.More generally, we have the following proposition.Proposition 7.3 For all k ≥ 1, the highest power of x ourring in Q

(∅,0,k−1,0)
kn,132 (x) is xn, with oe�-ient (Ck−1)

n.



QUADRANT MARKED MESH PATTERNS IN 132-AVOIDING PERMUTATIONS 255Proof. It is easy to see that the permutations that maximize the number of mathes of MMP (∅, 0, k−
1, 0) in Skn(132) are the permutations that have bloks onsisting of

τ (n)(kn)τ (n−1)(k(n − 1))τ (n−2)(k(n − 2)) · · · τ (1)k,where for eah i = 1, . . . , n, τ (i) is a permutation of (i − 1)k + 1, . . . , (i − 1)k + k − 1 that avoids 132.Sine there are Ck−1 hoies for eah τ (i), the result follows. 2It is also not di�ult to see that the highest power of x in Q
(∅,0,1,0)
2n+1,132(x) is xn, whih has theoe�ient 3n + 1. That is, if σ ∈ Sn(132) and mmp(∅,0,1,0)(σ) = n, then σ must be equal to either

(2n + 1)(2n − 1)(2n)(2n − 3)(2n − 2) · · · 12,
(2n − 1)(2n)(2n + 1)(2n − 3)(2n − 2) · · · 12, or
(2n)(2n − 1)(2n + 1)(2n − 3)(2n − 2) · · · 12,or be of the form (2n)(2n+1)τ , where τ ∈ S2n−1(132), whih has n−1 ourrenes of MMP (∅, 0, 1, 0).Thus, for n ≥ 2,
Q

(∅,0,1,0)
2n+1,132(x)|xn = 3 + Q

(∅,0,1,0)
2n−1,132(x)|xn−1 .The result now follows by indution, sine Q

(∅,0,1,0)
3,132 (x)|x = 4.The sequene (Q

(∅,0,1,0)
n,132 (x)|x)n≥2 is A014143 in the OEIS, whih has the generating funtion

1−2t
√

1−4t
2t2(1−t)2

. That is, one an easily ompute that
Q

(∅,0,1,0)
132 (t, x)|x =

1

1 + t(x − 1) − xtC(t)
|x =

1

1 − (tx(C(t) − 1) + t)
|x

=
∑

n≥1

(tx(C(t) − 1) + t)n|x =
∑

n≥1

(

n

1

)

t(C(t) − 1)tn−1

= (C(t) − 1)
∑

n≥1

ntn =

(

1 −
√

1 − 4t

2t
− 1

)

t

(1 − t)2

=
1 − 2t −

√
1 − 4t

2(1 − t)2
.We have omputed that

Q
(∅,0,2,0)
132 (t, x) = 1 + t + 2t2 + (3 + 2x)t3 + (5 + 9x)t4 +

(8 + 34x)t5 +
(

13 + 115x + 4x2
)

t6 +
(

21 + 376x + 32x2
)

t7 +
(

34 + 1219x + 177x2
)

t8 +
(

55 + 3980x + 819x2 + 8x3
)

t9 + · · · .The sequene (Q
(∅,0,2,0)
n,132 (0))n≥2 is the Fibonai numbers. We an give a ombinatorial explanationfor this fat as well. That is, the permutations in Sn(132) that avoid the pattern MMP (∅, 0, 2, 0) areof the form nα, where α is a permutation in Sn−1(132) that avoids MMP (∅, 0, 2, 0), or of the form

(n − 1)nβ, where β is a permutation in Sn−2(132) that avoids MMP (∅, 0, 2, 0). It follows that
Q

(∅,0,2,0)
n,132 (0) = Q

(∅,0,2,0)
n−1,132(0) + Q

(∅,0,2,0)
n−2,132(0).



256 S. KITAEV, J. REMMEL AND M. TIEFENBRUCKThe sequene (Q
(∅,0,2,0)
n,132 (x)|x)n≥3 does not appear in the OEIS.We have omputed that

Q
(∅,0,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (9 + 5x)t4 + (18 + 24x)t5 + (37 + 95x)t6 +

(73 + 356x)t7 +
(

146 + 1259x + 25x2
)

t8 +
(

293 + 4354x + 215x2
)

t9 + · · · .The sequene (Q
(∅,0,3,0)
n,132 (0))n≥0 is sequene A077947 in the OEIS, whih has the generating funtion

1
1−x−x2−2x3 . However, the sequene (Q

(∅,0,3,0)
n,132 (x)|x)n≥4 does not appear in the OEIS.We have omputed that

Q
(∅,0,4,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (28 + 14x)t5 + (62 + 70x)t6 +

(143 + 286x)t7 + (331 + 1099x)t8 + (738 + 4124x)t9 + · · · .The sequene (Q
(∅,0,4,0)
n,132 (0))n≥0 does not appear in the OEIS.Referenes[1℄ P. Brändén and A. Claesson, Mesh patterns and the expansion of permutation statistis assums of permutation patterns, Eletron. J. Combin., 18(2) (2011) #P5 (14pp.).[2℄ E. Deutsh and L. W. Shapiro, A survey of the Fine numbers, Disrete Math., 241 (2001)241�265.[3℄ E. Deutsh and L. W. Shapiro, A bijetion between ordered trees and 2-Motzkin paths andits many onsequenes, Disrete Math., 256 (2002) 655�670.[4℄ Í. Hilmarsson, I. Jónsdóttir, S. Sigurdardottir and S. Vidarsdóttir, Wilf lassi�-ation of mesh patterns of short length, in preparation.[5℄ S. Kitaev, Patterns in permutations and words, Monographs in Theoretial Computer Siene(with a foreword by Je�rey B. Remmel), Springer-Verlag, ISBN 978-3-642-17332-5, 2011.[6℄ S. Kitaev and J. Remmel, Quadrant marked mesh patterns, J. Integer Seq., 15 (2012)Artile 12.4.7 (29 pp.).[7℄ S. Kitaev, J. Remmel and M. Tiefenbruk, Quadrant marked mesh patterns in 132-avoiding permutations II, arXiv:1302.2274.[8℄ S. Kitaev, J. Remmel and M. Tiefenbruk, Quadrant marked mesh patterns in 132-avoiding permutations III, arXiv:1303.0854.[9℄ N. J. A. Sloane, The on-line enylopedia of integer sequenes, published eletronially atoeis.org.[10℄ R. P. Stanley, Enumerative Combinatoris 2, Cambridge University Press, 1999.[11℄ H. Úlfarsson, A uni�ation of permutation patterns related to Shubert varieties, Pure Math.Appl. (PU.M.A.), 22 (2011) 273�296.


