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Abstract. We study the generating function > >0 tn—T: N Mo (1) glRmin(e)y 1tdes(o) where AN'M,, () is the set of
permutations o in the symmetric group S, which have no consecutive occurrences of 7, 7 is of the form 1p2...(p—1) or
13...(p—1)2p for some p > 4, des(o) is the number of descents of o and LRmin(o) is the number of left-to-right minima

g

n!

x
of 0. We show that for any p > 4, this generating function is of the form (m) where U-(t,y) = ano Urn(y)

and the coefficients U- (y) satisfy some simple recursions depending on p.
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1 Introduction

Given a sequence o = o7 ... o0y, of distinct integers, let the reduction of o, red(o), be the permutation
found by replacing the i*! largest integer that appears in o by i. For example, if ¢ = 2 7 5 4, then
red(c) =14 3 2. Given a permutation 7 = 77 ...7, in the symmetric group S,, we say a permutation
0 =01...0n €Sy has a T-match starting at position i provided red(o;...0;4p—1) = 7. Let 7-mch(o)
be the number of 7-matches in the permutation o. Given a permutation ¢ = o1...0, € S,, we let
des(0) = |{i : 03 > 0iq1}|. We say that o; is a left-to-right minimum of o if o; < o; for all i < j. We
let LRmin(o) denote the number of left-to-right minima of o.
The main object of study in this paper is the generating function

tn
NMT(t,x,y) = Z NMT,n($7y)

n!
n>0

(1)
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where N'M,,(7) is the set of permutations in S,, with no 7-matches and

NMTm(:L‘, y) = Z xLRmin(cr)yl—i-dos(cr) ‘ (2)
oceN My (1)

In particular, the main goal of this paper is to compute the generating function N M, (¢, x,y) and the
polynomials N M ,,(z,y) for two infinite families of permutations, namely, 7 of the form 1p23... (p—1)
and 7 of the form 13...(p — 1)2p where p > 4. There are a number of methods that have appeared
in the literature to study the generating functions for either the distribution of 7-matches in §,,, see
[9, 5, 20, 24, 16], as well as methods to find the number of permutations of S,, with no 7-matches, see
[6, 1, 17, 15]. None of these approaches tries to study the refined generating function NM; ,(z,y).
Instead, we shall use the so-called reciprocity method introduced by the authors in [14] to compute
generating functions of the form NM,(¢,z,y) where 7 is a permutation which starts with 1. In
particular, the authors [14| proved that in such a situation, one can always write the generating
function NM,(t,z,y) as

1 “ "
NMT(t,.’L’,y) = (m) where UT(t,y) =1+ Z U7-7n(y)m (3)
T\b n>1 :
Thus 1
Ur(tay) = (4)

L4+ 30 NMep(1,y) 5

One can then use the homomorphism method to give a combinatorial interpretation the right-hand
side of (4) which can be used to find simple recursions for the coefficients U, ,,(y). The homomorphism
method derives generating functions for various permutation statistics by applying a ring homomor-
phism defined on the ring of symmetric functions A in infinitely many variables x1,xo,... to simple
symmetric function identities such as

H(t) = 1/B(~t) (5)

where H(t) and E(t) are the generating functions for the homogeneous and elementary symmetric
functions, respectively:

Ht) =Y hat" =] %ﬂ Et) = ent" = [[1+ait (6)

n>0 1>1 n>0 1>1

See, for example, |2, 18, 19, 20, 21, 22, 23]. In our case, we define a homomorphism 6 on A by setting

O(en) = ﬂNMT,n(l, Y).

n!
Then - )
H(E(_t)) = nEZ:ONMﬂn(lvy)ﬁ = Uf(t,y) :
Hence 1
Ur(t,y) = ;= = 0(H (1))
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which implies that

Thus if we can compute n!f(hy) for all n > 1, then we can compute the polynomials U, ,(y) and the
generating function U, (t,y) which in turn allows us to compute the generating function NM, (¢, z,y).

In [14], the authors studied the generating functions U (¢,y) for permutations 7 of the form 7 =
1324 ...p where p > 4. That is, 7 arises from the identity permutation by transposing 2 and 3. Using
the homomorphism method, the authors [14] proved that Ujs24,1(y) = —y and for n > 2,

[n/2]

Utszan(y) = (1= 9)Uis2an1 () + > (=9)* ' Cho1Ursaam—2k41(y) (8)
k=2

where Cy, = 17

+ (2 ) is the k-th Catalan number. They also proved that for any p > 5, Uso4. pn(y) =
—y and for n > 2,

|2=2)+1

Uisaa..pn(y) = (1 = y) U324, pn—1(y) + Z (=) Uiz0a. pin— (k-1 p—2)+1) (¥)- (9)
k=2

The main goal of this paper is to prove the following two theorems.

THEOREM 1.1 Let 7= 1p23...(p — 1) where p > 4. Then

1 v "

NM, (t,z,y) = | —— where U, (t,y) =1+ Urn(y)—,

e = (7) ) =1+ LU

Ur1(y) = —y, and, for n > 2,
[2=2)+1
i (n—(k=1(p-3) -2
Unn) = 1= 9Urnaly) + > (—p)F 1< ( f )_( | ) >Ur,n—((k—1)(p—2)+1)(y)'
k=2

We note that the special case of Theorem 1.1 where p = 4 was proved in the extended abstract
[13].

THEOREM 1.2 Let 7 =13...(p — 1)2p where p > 4. Then

1 * "
NM, (t,z,y) = | —— where U, (t,y) =1+ Urn(y)—,
e = (g2 () =1+ Ul
Uri(y) = —y, and, forn > 2,
n— 2
1 k(p—1)
Urnl) = (1= )0ns) + 3 0 g (MO ) O 0

k=1
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For p > 5, these two recursions are more complicated than the recursion for 7 of the form 1324...p
given in (9) in that the recursions for 7 of the form 1p23...(p — 1) involve binomial coefficients and
the recursions for 7 of the form 13... (p — 1)2p involve coefficients which count the number of (p — 1)-
ary trees. In all three cases described above, computational evidence suggests that the polynomials
Urn(—y) are log-concave polynomials. In the case where p = 3, the permutation 1p2... (p—1) becomes
132 and the permutation 13...(p — 1)2p becomes 123. The authors computed explicit formulas for
NDMis9(t,x,y) and NMjas(t, z,y) using other methods in [12].

The outline of this paper is as follows. In Section 2, we recall the background in the theory of
symmetric functions that we will need for our proofs. Then in Section 3, we prove Theorems 1.1 and
1.2, Finally in Section 4, we state our conclusions and discuss some areas for further research.

2 Symmetric functions

In this section, we give the necessary background on symmetric functions that will be needed for our
proofs.

A partition of a positive integer n is a vector of non-zero integers A = (A1,...,As) where 0 < \; <
o< Agand n = A +...+ As. Each \; for 1 < i < s is called a part of A and we let £(\) denote
the number of parts of A. We use the notation A - n to mean A is a partition of n. When a partition
of n involves repeated parts, we shall often use exponents in the partition notation to indicate these
repeated parts. For example, we will write (12,23,32) for the partition (1,1,2,2,2,3,3).

Let A denote the ring of symmetric functions in infinitely many variables x1,a2,.... The n't
elementary symmetric function e, = e,(x1,22,...) and n'" homogeneous symmetric function h, =
hn (21,2, ...) are defined by the generating functions given in (6). For any partition A = (A1, ..., Ag),
let ex = ey, ---en, and hy = hy, ---hy,. It is well known that {ey : A is a partition} is a basis for
A. In particular, eg,eq, ... is an algebraically independent set of generators for A and, hence, a ring
homomorphism # on A can be defined by simply specifying 0(e,,) for all n.

A key element of our proofs is the combinatorial description of the coefficients of the expansion of
hy in terms of the elementary symmetric functions ey given by Egecioglu and the second author in
[7]. They defined a A-brick tabloid of shape (n) with A F n to be a rectangle of height 1 and length
n which is covered by “bricks” of lengths found in the partition A in such a way that no two bricks
overlap. For example, Figure 1 shows the six (12,22)-brick tabloids of shape (6).

]I | I [ I | O
| I | O O [ A ||
A | A O O O | O ||

Figure 1: All six (12,22)-brick tabloids of shape (6).

Let By, denote the set of A-brick tabloids of shape (n) and let By, be the number of A-brick
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tabloids of shape (n). If B € By,, we will write B = (b1,...,byy)) if the lengths of the bricks in
B, reading from left to right, are b1,...,by). Through simple recursions, Egecioglu and the second
author |7]| proved that

hn =Y (1" By, en. (11)
AFn

This interpretation of h,, in terms of e, will aid us in describing the coefficients of 0(H (t)) = U, (t,y)
which will in turn allow us to compute the coefficients N M, ,(x,y).

3 The proof of Theorems 1.1 and 1.2.

3.1 The homomorphism method and an involution

First we recall the key steps in the required application of the homomorphism method for our problem

as described in [14]. Suppose that 7 € S; is a permutation such that 7 starts with 1 and des(7) = 1.

Our first step is to give a combinatorial interpretation to

B 1 B 1
NM:(t,1,y) 1+Zn21 %NMT,n(lvy)

U, (t,y) (12)

where NM,,(1,y) = ZUENMn(T) yltdes(@)

Following [14], we define a ring homomorphism 6, on the ring of symmetric functions A by setting
0:(eg) =1 and

0,(en) = %NMTm(l,y) forn > 1. (13)
It follows that
n 1 _ 1
Or(HE) = 2 0t = G = TSy (070 er)
= ! = UT(t7y)

1+ anl %NMr,n(la y)

which is what we want to compute.
By (11), we have that

nlor(hy) = nl> (=1)"" By, 0-(ex)

AFn
LA
= nly (-1)"t 3 U N (1,)
Afn (b1,.5bg (1)) EBA n =1 ¢
o)
= —1)¢N) n NMp (L), y
20 2 b, by H (L) (14)
AFn (b17"'7bf(k))€BA,n i=1

Our next goal is to give a combinatorial interpretation to the right-hand side of (14). Fix a partition
Aof nand a A-brick tabloid B = (b1, ..., by(x)). Then we can interpret (b1 ___"bl(k)) as the number of ways
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of picking an ordered set partition (S1,...,Sx)) of {1,...,n} such that |[S;| = b; for i = 1,...,£(X).
We will interpret Hf(:)‘l) NM,,(1,y) as the number of ways of picking permutations (¢(V), ... o)
such that oV € N'M,, (1) and assigning a weight to this £(\)-tuple to be Hf(:‘l) ydes(@)+1,

We can then use the triple (B, (S1,...,Syn)), (e, ..., 6 to construct a filled-labeled-brick

tabloid O<B7(Sl7”'7SZ(A))7(J(1)7___70(20))» as follows. First for each brick b;, we place a permutation 7(%) of S;

in the cells of the brick, reading from left to right, so that red(7(?)) = ¢(?). Then we label each cell of b,
that starts a descent of 7() with a y and we also label the last cell of b; with y. This accounts for the fac-
tor ydCS("(i))H. Finally, we use the factor (—1)50‘) to change the label of the last cell of each brick from
y to —y. For example, suppose n = 19, 7 = 15234, B = (9,3,5,2), S1 = {2,5,6,9,11,15,16,17,19},
Sy = {7,8,14}, S3 = {1,3,10,13,18}, Sy = {4,12}, ) = 162978345 NM,9,0? =132 ¢
NM; 3, o® =51243¢ NM; 5, and c® =921¢ NM: 5. Then we have pictured the filled-labeled
brick tabloid O (s, s,) (o, o)) constructed from the triple (B, (S1,...,54), (e, ..., 0®)) in
Figure 2.

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} (4,12}

oc@=162978345 0@=182 o0®=51243 oc¥=21

y[ [y ¥ = A Y[y ¥y
2(15| 5[19]16]17] 6| 9 11]|| 7|14 8||{18] 1] 3 |1310]||12] ]

Figure 2: The construction of a filled-labeled-brick tabloid.

Given O = O(B,(Sl,...,Se(A)),(a(l),...,a(fW)))U’ let o be the permutation which is obtained by reading
the elements in the cells of O from left to right. Then it is easy to see that we can recover O and
the labels on the cells of O from B and o. Thus we shall specify the filled-labeled-brick tabloid
O<B7(517---732(A))7(U(1),---70'“()‘)))) by (B,o0). We let O,, denote the set of all filled-labeled-brick tabloids

constructed in this way. That is, O;,, consists of all pairs O = (B, o) where
1. B = (b1,...,bgy) is brick tabloid of shape (n),
2. 0 € S, such that there is no 7-match of o which is entirely contained in a single brick of B, and

3. if there is a cell ¢ such that a brick b; contains both cells ¢ and ¢+ 1 and o, > o.41, then cell ¢
is labeled with a y and the last cell of any brick is labeled with —y.

The sign of O, sgn(0), is (—1)!™ and the weight of O, W(0), is y!O+intdes(@) yhere intdes(o)
denotes the number of ¢ such that o; > 0,41 and o; and o;4; lie in the same brick. We shall refer to
such ¢ as an internal descent of O. For example, if 7 = 15234, then such a filled-labeled-brick tabloid
O constructed from the brick tabloid B = (2,8,3) is pictured in Figure 3 where W(0O) = y” and
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sgn(0) = (—1)3. Note that the labels on O are completely determined by the underlying brick tabloid
B = (b1, ..,by)) and the underlying permutation o. Thus the filled-labeled-brick tabloid O pictured
in Figure 3 equals ((2,8,3),4 117810512396 21 13).

It follows that

nlo,(hy) = Y sgn(O)W(O). (15)
OEOT,n
-y y y y | 7Y y -y

4]l 7] 8] 10] 5 ]12] 3] 9/ls6]|] 2] 1] 13

Figure 3: An element of O15234,13.

We shall often want to start with a filled-labeled-brick tabloid O = (B, o) and remove the first &
cells of O and consider the resulting object redi(B, o) = (B’,a) where B’ is the brick tabloid whose
bricks end at those cells ¢ > k where cell ¢ is the end of a brick in B and whose permutation « is
red(ok41 ...0,). For example, if O is the filled-labeled-brick tabloid pictured in Figure 3, then red4(O)
is pictured in Figure 4.

y y y |-y |y -y
(71 a]l 8] 3] 6[5]ll2] 1] 9]

Figure 4: red4(O) for O in Figure 3.

Next we define a weight-preserving sign-reversing involution Ir on O,. Given an element O =
(B,0) € Oy, where B = (by,...,b;) and 0 = 01 ...0,, scan the cells of O from left to right looking
for the first cell ¢ such that either

(i) cislabeled with a y or

(ii) cis a cell at the end of a brick b;, 0. > 0,41, and there is no 7-match of o that lies entirely in
the cells of bricks b; and b;41.

In case (i), if ¢ is a cell in brick bj, then we split b; into two bricks b’ and b7 where b’ contains all
the cells of b; up to an including cell ¢ and b;’ consists of the remaining cells of b; and we change the
label on cell ¢ from y to —y. In case (ii), we combine the two bricks b; and b;y; into a single brick b
and change the label on cell ¢ from —y to y. For example, consider the element O € O13245.13 pictured
in Figure 3. Note that even though the number in the last cell of brick 1 is greater than the the
number in the first cell of brick 2, we can not combine these two bricks because 4 11 7 8 10 would be a
15234-match. Thus the first place that we can apply the involution is on cell 5 which is labeled with a
y so that I-(O) is the object pictured in Figure 5. Finally, if neither case (i) or case (ii) applies, then
we define I-(0O) = O.
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-y -y y y |-y |y -y
lall{l7z ] 8 ]10]|l5]12] 3] 9ls6l|] 2] 1] 19

Figure 5: I.(O) for O in Figure 3.

In [14], the authors proved that I is an involution if 7 starts with 1 and des(7) = 1. It is clear from
our definitions that if I-(O) # O, then sgn(O)W (0O) = —sgn(I-(0))W (I-(0O)). Hence it follows from
(15) that

0, (hy) = Z sgn(O)W(0) = Z sgn(O)W(0). (16)
Oeo‘r,n OEOT,n,IT(O):O
Hence if 7 starts with 1 and des(r) = 1, then
Urn(y) = > sgn(0)W(0). (17)

OEOT,7L7IT(O):O

Thus to compute U, (y), we must analyze the fixed points of I.

Note that if O is a fixed point of I, then we can not apply case (i) of I so that there can be no
cells labeled with y which means that the elements in each brick of O must be increasing. Similarly,
we cannot apply case (ii) of I so that if b; and b;+; are two consecutive bricks in O, then either there
is an increase between bricks b; and b;4 1, i.e. the last element in b; is less than the first element of b;1 1,
or there is 7-match contained in the elements of the cells of b; and b;4; which must necessarily involve
both the last element in b; and the first element of b;y;. In addition, the authors proved in [14] that
in the case where 7 starts with 1 and des(7) = 1, every fixed point O of I has the additional property
that the first elements in the bricks of O form an increasing sequence, reading from left to right. Thus
we have the following lemma.

LEMMA 3.1 Suppose that 7 € S;, T starts with 1, and des(t) = 1. Let 6 : A — Q(y) be the ring
homomorphism defined on A where Q(y) is the set of rational functions in the variable y over the

rationals Q, 0-(eg) =1, and 0,(e,,) = " NM; »(1,y) forn > 1. Then

n!

nl0;(hy) = Z sgn(0)W(0) (18)
OGOT,')’HI‘F(O):O

where Oy, is the set of objects and I, is the involution defined above. Moreover, O = (B,o) € O,
where B = (by,...,bg) and 0 = 01...,0, is a fivzed point of I if and only if O satisfies the following
three properties:

1. there are no cells labeled with y in O, i.e., the elements in each brick of O are increasing,
2. the first elements in each brick of O form an increasing sequence, reading from left to right, and

3. if by and bi11 are two consecutive bricks in O, then either (a) there is increase between b; and
biy1, t.e., TS o] < Ty, fol OT (b) there is a decrease between b; and b1, i.e., TS o] >
Ty by but there is T-match contained in the elements of the cells of b; and b1 which must

=

necessarily involve ow—i and o ; .
y > 1] 1320 [yl
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3.2 Proof of Theorem 1.1
Let 7=1p23...(p — 1) where p > 4. Then by (17), we must show that the coefficients

Unly)= Y. sgn(O)W(0)
OGOT,TUIT(O):O

have the following properties:
1. Uri1(y) = —y, and

2. forn > 1,
[2=2]+1 1 e (k—1)(p—3)—
Urn(y) = 1 = Urn1(y) + 5050 (=)L (ED09" 90 200 (¥)-

Property (1) is immediate since there is only one filled-labeled-brick tabloid O of size 1, namely,
O =((1),1), and sgn(0) = —1 and W(0O) = y.

Next assume that n > 1 and O = (B,0) € O, is a fixed point of I where B = (by,...,b;) and
0 =01...0, By Lemma 3.1, we know that 1 is in the first cell of O so that o; = 1.

We claim that 2 must be in the second or third cell of O. That is, it must be the case that either
oy = 2 or 03 = 2. To prove this, suppose for a contradiction that o, = 2 where ¢ > 3. Since there
are no descents within any brick, 2 must be in the first cell of its brick. Moreover, since the minimal
elements in the bricks of O form an increasing sequence, reading from left to right, 2 must be in the first
cell of the second brick by so that ¢ = |by|+ 1. Since ¢ > 3, |b;| > 3 which implies that 1 < o.—2 < 0c—1
and o._9 > 0. = 2. However, by part (b) of part 3 of Lemma 3.1, this means that there must be a
7-match that involves o._1 and o.. Since 7 has only one descent, this would mean that o._s0._10.
would have to play the role of 1p2 in the 7-match which is impossible since g._2 > o..

We now have two cases depending on whether oy = 2 or o3 = 2.

Case 1. 09 = 2.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in the first brick b; of
O or (ii) brick by is a single cell filled with 1 and 2 is in the first cell of the second brick by of O. In
either case, we know that 1 is not part of a 1p23...(p — 1)-match in O since 2 cannot play the role of
pin 1p23... (p—1)-match in O. It follows that red; (O) satisfies conditions (1), (2), and (3) of Lemma
3.1 and, hence, red;(O) is a fixed point of I.. In case (i), we see that sgn(O) = sgn(red;(O)) and
W(O) = W(red1(0)) and, in case (ii), sgn(O) = —sgn(red; (0)) and W(O) = yW (red;(0)).

Moreover, we can create a fixed point O = (B,0) € O, satisfying conditions (1), (2) and (3) of
Lemma 3.1 where oy = 2 by starting with a fixed point (B’,0’) € O-,,—1 of I, where B' = (b,..., V)
and o’ = o0} ...0]_4, and then letting 0 = 1(o] +1)...(0},_; + 1), and setting B = (1,b],...,b.) or
setting B = (1 +b},...,0..).

It follows that fixed points in Case 1 will contribute (1 — y)U;,,—1(y) to Urn(y).

Case 2. 03 = 2.

Since there are no descents within bricks in O and the minimal elements of the bricks are increas-
ing, reading from left to right, it must be the case that 2 is in the first cell of brick be. Thus it must
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be the case that b; has two cells and oy > 3. By part (b) of condition 3 of Lemma 3.1, there must be
exist a 7-match among the elements of bricks b; and by that involves o9 and o3. The only way this is
possible is if the 7-match starts in cell 1 so that red(oy...0p) = 1p23... (p — 1). Hence by must have
at least p — 2 cells.

Next we claim that o,_; = p—2. That is, we know that o,_; must be greater than o1,03,...,0,-2
so that 0,1 > p—2. Next suppose for a contradiction that 0,1 > p—2. Then let 7 be the least number
in the set {1,...,p — 2} that is not contained in bricks b; and by. Since the numbers in each brick are
increasing and the minimal elements of the bricks are increasing, the only possible position for ¢ is the
first cell of brick b3. But then it follows that there is a descent between the last cell of brick by and the
first cell of b3. Since O is a fixed point of I, this must mean that there is a 7-match that includes the
last cell of by and the first cell of b3. But since 7 has only one descent, this 7-match can only start at
the cell ¢ = by + by — 1 which is the penultimate cell of by. Thus ¢ could be p — 1 if by has p — 2 cells
or ¢ > p — 1 if by has more than p — 2 cells. In either case, p —1 < 0p—1 < 0 < Ocy1 > 0cp2 = 4. But
this is impossible since to have a 7-match starting at cell ¢, we must have o, < g.42. Thus it must be
the case that 0,1 =p—2and {o1,...,0p_1} — {02} ={1,....,p — 2}

We now have two subcases depending on whether or not there is a 7-match in O starting at cell p—1.

Subcase 2.1. There is no 7-match in O starting at cell p — 1.

First, we claim that in this case 0, = p — 1. That is, if 0, # p — 1, then 0, > p — 1. This
means that p — 1 cannot be in brick bs. Similarly, p — 1 cannot be o3 since the fact that there is a
1p2...(p — 1)-match starting at cell 1 means that o2 > 0, > p — 1. Thus p — 1 must be in the first
cell of the brick b3. This would imply that there is a descent between the last cell of b and the first
cell of b3 since p —1 < 0, and o), is in by. Since there is no 7-match in O starting at cell p — 1, the
only possible 7-match contained the cells of by and b3 would have to start at cell ¢ where ¢ £ p — 1. It
cannot be that ¢ < p — 1 since then it would be the case that 0. < .11 < 0c12. Also, it cannot be
that ¢ > p — 1 since then o, > p — 1 and o, must be the least integer in the 7-match. Thus it must be
the case that o, = p — 1.

Then we have that O’ = red,_1(O) satisfies conditions (1), (2), and (3) of Lemma 3.1. Hence it
follows that O’ = red,_1(0) is a fixed point of I; in O ,_(,—1) such that sgn(O) = —sgn(red,_1(0))
and W(0) = yW (redp—1(0)). Note that if by has p — 2 cells, then O’ will start with a brick of size
one and if by has more than p — 2 cells, then O’ will start with a brick of size at least two. On
the other hand, if we start with fixed point O' = (B',0") € O ,,_(p—1) of I, then we can construct
a filled-brick tabloid O = (B,0) € O, satisfying conditions (1), (2), and (3) of Lemma 3.1 which
has a 7-match starting at cell 1, but has no 7-match starting at cell p — 1 in O, by first picking
oy € {p,...,n}, then letting o1 = 1, 03 = 2,04 = 3,...,0p—1 = p — 1 and letting o, - -0, be per-
mutation of {1,...,n} — {o1,...,0p—1} such that red(o,---0,) = o’. It B' = (b},b),...,b,), we let
B = (2,p—3+41U,b,,...,b.). Hence (B,o) is a fixed point of I. It follows that the fixed points in
Subcase 2.1 will contribute (—y)(n — (p — 1))Ur pn—p—1)(¥) to Urn(y)-

Subcase 2.2. There is a 7-match starting at cell (p — 1) in O.

In this subcase, it must be that o,_1 < 0, > 0,41 so that by must have p — 2 cells and brick b3
starts at cell p+ 1. We claim that b3 must have at least p — 2 cells. That is, there must be a 7-match
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that includes the last cell of by and the first cell of b3 and since the pattern 7 is of length p, b3 must
have at least p — 2 cells. Moreover, there is a 7-match that starts at cell 1 and another one that starts
at cell p— 1. These two T-matches overlap on 0,_1 and o,. In general, assume that there is chain of
T-matches in O = (B, o) starting at cell 1 where each consecutive pair of 7-matches overlap on two
cells. Suppose there are exactly £ —1 such 7-matches in this chain. Then the jth 7-match starts at the
penultimate cell of brick b;. Brick by must have two cells and brick b; must have p — 2 cells for each
2 < j < k—1 and brick by must have at least p—2 cells. Let r; be an integer such that the jth 7-match
starts at cell 7;. Thus r; =1+ (j —1)(p —2) for 1 < j <k —1. Define r, =14 (k- 1)(p — 2) and
assume that O does not have a T-match starting at position rp. Thus we have the situation pictured
below in Figure 3.2.

T2 Tk—1 Tk
Lorfoeos [ Low [0 ["[ |- Jon,[on o] [~[on [onn [
b1 bz bkfl bk

Figure 6: An example of a brick tabloid with a chain of k¥ — 1 7-matches each starting at r;.

First we claim o, = r; — (j — 1) and

{Lo.ory—=G-0}={o1,...,0n} —{opr1:i=1,...,5 -1}

for j =1,...,k. We have shown that oy = 1 and that o,, = 0),—1 = p — 2 and

{o1,...,0p-1} —{o2} = {1,...,p — 2}. Thus assume by induction, o, ;, =7;_1 — (j — 2) and
{1,..rj0 =G —=2)} ={o1,...,00,_,} —{op,41 14 = 1,...,j — 2}. Since there is a 7-match that
starts at cell r;_; and p > 4, we know that all the integers in

{O-ijl yO0r; 141, 0rj 1425 - - 70'7“j71+p—3} - {O-ijl'f‘l}

are less than Or; = Or;_y+p—2- Since

{1,...,7‘]‘_1—(j—2)}:{0'1,...,0}3.71}—{0'”4_1:i:1,...,j—2},

it follows that o, > 71— (j —2)+(p—3) =7r; — (j — 1).
Next suppose that o, > r; — (j — 1). Then let i be the least integer which is in

Lo r=G-0={o1,-yon ) —{orp:i=1,...,5 —1}).

Our assumptions ensure that o, 41 > 0pyq1 > ... > Orj+1 SO that 7 does not lie in the bricks bq,...,b;.
Because the integers in each brick increase and the minimal integers in the bricks are increasing, it
must be the case that 4 is in the first cell of the next brick b;11. Now it cannot be that j < k because
then we have that i = Orj+2 < Tj — -1 < Or; < Opj41 which would violate the fact that there is a
7-match in O starting at cell ;. If j = k, then it follows that there is a descent between the last cell
of by, and the first cell of by since ¢ is in the first cell of byy; and i < rp — (k — 1) < o,,. Since O
is a fixed point of I, this must mean that there is a 7-match that includes the last cell of b and the
first cell of by41. But since 7 has only one descent, this 7-match can only start at the cell ¢ which is
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the penultimate cell of by. Thus ¢ must be greater than r; because we are assuming that there is no
T-match starting at cell r,. Hence byi1 must have more than p — 2 cells. In this case, we have that
i <rp—(k—1) <oy <0c<0c41 > 0cyp = 4. But this cannot be since to have a 7-match starting
at cell ¢, we must have o, < g.y2. Therefore it is not true that Op; >Tj— (j — 1) so that it must be
the case that o, = r; — (j — 1). Finally since

LAL...,rj1— (G —2)}={o1,...,00, 1} —{opp1:i=1,...,5 — 2} and
2. Op; 130 142, 0r; 1 +p—3 < Orj,

it must be the case that

{Loory—G-0}={o1,...,0on} —{opr1:i=1,...,5 -1}

as desired. Thus we have proved by induction that o, = 7; — (j — 1) and {1,...,7; — (j — 1)} =
{o1,...,o0} —{op1ii=1,...,j—1}for j=1,... k.

This means that the positions of the elements in the set {o1,...,00,} —{op41:i=1,...,k — 1}
are completely determined. Next we claim that since there is no 7-match starting at position rg, it
must be the case that o, 41 =7y — (kK —1) +1 =17, —k+ 2. That is, since there is a 7-match starting
at cell r; for j = 1,...,k — 1, it must be the case that o, 41 > 0ppq1 > -+ > 0441 > Oppyr1. I
Orp+1 # Tk — k + 2, then o,, 41 > 7, — k + 2 and, hence, r; — k + 2 cannot be in any of the bricks
bi,...,bx. Thus rp — k + 2 must be in the first cell of the brick biy;. But then there will be a descent
between the last cell of by, and the first cell of by since r, — k + 2 < 0y, 41 and o0y, 1 is in by. Since
there is no 7-match starting at cell rg, the only possible 7-match among the cells of by and by would
have to start at a cell ¢ with ¢ # ri. But it cannot be that ¢ < rg since then o, < gc11 < Tcqgo.
Similarly, it cannot be that ¢ > rg since then o, > rp, — k + 2 and r; — k 4+ 2 would have to be part
of the 7-match which means that o, could not play the role of 1 in the 7-match. Thus it must be the
case that o, 41 =7 —k + 2.

It follows that O" = red,, (O) satisfies conditions (1), (2), and (3) of Lemma 3.1 and hence is a
fixed point of I in Or,_,,. Note that if by has p — 2 cells, then the first brick of O" will be of size
1 and if by has more than p — 2 cells, then the first brick of O’ will have size at least two. Since
there is a 7-match starting at each of the cells r; for j = 1,...,k — 1, it must be the case that
Opi41 > Opgql > =+ > Op 41 > Oppy1 = T — k+ 2. On the other hand, if we start with any fixed
point O' = (B',0’) € O:p—y, of I; where B" = (V},...,V)), then we can create filled-labeled-brick
tabloid O = (B,0) € O, satistying conditions (1), (2), and (3) of Lemma 3.1 which has 7-matches
starting at positions 1,71,...,7x_1 but no 7-match starting at position r; by letting the first £ — 1
bricks of B be a brick of size 2 followed by k& — 2 bricks of size p — 2 and then having the k-th brick
of B be a size p — 2 + b} and the remaining bricks be b, ...,b.. The permutation o is constructed by
ensuring that

(i) the elements 1,...,7, — k — 2 occupy the set of cells {1,...,ry +1} = {r+1:i=1,...,k— 1},
reading from left to right,

(ii) there are k—1 integers a; > -+ > aj_1 from {ry+k—1,...,n} which occupy cells r{+1,...,r,_1+
1, reading from left to right, and
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(iii) oy —k+1...0p is a permutation of {1,...,n} — ({1,..., 7 —k+2}U{a1,...,ar_1}) that reduces
to o’.

Each such (B, o) will be a fixed point of I such that ¢ has a chain of 7-matches that start at o1 and
overlap in exactly two elements. Note that we have (”_(T;__lk_m) = (”_(k_,i)_(f_g)_z) ways choose the
numbers ai, . ..,ax_1. Moreover, W(O) = y*~1W(0’) and sgn(0) = (—1)*1sgn(0’). It follows that
the fixed points in Subcase 2.2 will contribute

L2=2]+1

> =yt <n —( _k_l)_(zi_ 3~ 2) Urn—((k-1)(p-2)+1) (%)

k>3

to Urpn(y).

Hence we have proved that if 7= 1p23...(p — 1) where p > 4, then

1 v "

NM(t,z,y) = where U,(t,y) =1+ Urn(y)—,

o) = (i) () =1+ Ul

U-i(y) = —y, and, for n > 1,
L2=2]+1
i (n—(k=1)(p-3) -2
Urn) = =00+ 3 ("I T 0
k=2

Thus Theorem 1.1 holds as desired.

For any polynomial f(z), we let f(z)|,» denote the coefficient of #¥ in f(x). We have used Theorem
1.1 to compute tables of the coefficients U1p23___p,n(y)]yi for n < 8 and p = 4,5,6. Having determined
these polynomials Uipes. pn(y), we have used Mathematica to compute tables of the polynomials
NMips.. p—1.n(x,y) for n <8 and p =4,5,6. See Tables 2-7 in Appendix I.

We note that there are many terms in these expansions which are easily explained. For example, the
identity permutation € = 12...n corresponds to the term xy in NMjy03 (1), (7,y) and the reverse
of the identity permutations € = n(n —1)...21 corresponds to the term z"y" in NMj,93 (p—1)n(T,Yy)-
More generally, we claim that N M. (p—1),n (2, Y)|zkyx is always the Stirling number of the second kind
S(n, k) which is the number of set partitions of {1,...,n} into k parts. That is, a permutation o € S,
that contributes to the coefficient z*y* in NMips. (p=1)n(2,y) must have k left-to-right minima and
k — 1 descents. Since each left-to-right minima of o which is not the first element is always the second
element of a descent pair, it follows that if 1 = 47 < 49 < i3 < --- < 4 are the positions of the left
to right minima, then o must be increasing in each of the intervals [1,i2), [i2,43), ..., [ik—1, ik), [ik, ]
But this means that

{0'1, e 70i2—1}7 {0'2‘2, e ,0'2'3_1}, ey {Oik—17 e ,O'Z‘k_l}, {O’ik, e ,O'n}
is just a set partition of {1,...,n} ordered by decreasing minimal elements. Moreover, no such per-
mutation can have a 1p2...(p — 1)-match for any p > 4. Vice versa, if Ay,..., A is a set partition of

{1,...,n} such that min(A;) > --- > min(Ag), then the permutation o0 = Ay + Ap—1 T...4; Tisa
permutation with k& left-to-right minima and k — 1 descents where for any set A C {1,...,n}, A 1is
the list of the elements of A in increasing order. It follows that for any p > 4,
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L. NM1p2...(p—1),n(x7y)‘Iy =S(n,1) =1,

2. NMypy. (p—1)(2,9)|g2y2 = S(n,2) = 2771 — 1,

3. NMypo. (p—1)(,Y)|znyn = S(n,n) =1, and

4. NMips (p1) (2, y)]gn-1yn-1 = S(n,n —1) = (3).

It is also not difficult to determine N M1p23m(p_1),n(x, Y)|zy2 which corresponds to those permuta-
tions o € ./\/’Mlp23___(p_1)7n which have one descent and LRmin(c) = 1 so that the first element of o
must be 1. First we can create a permutation with one descent by picking any subset A C {1,...,n}
and letting o4, be the permutation which consists of the elements of A in increasing order followed
by the elements of {1,...,n} — A in increasing order. For example if n = 6 and A = {2,4}, then
a6 = 241356. Clearly if A equals ) or A = {1,...,4} for some i < n, then o4, is just the identity
permutation which has no descents. Thus the number of permutations of S,, with exactly one descent
is 2" —n — 1. We have already shown that the number of permutations o € S,, such that des(c) = 1
and o does not start with 1 is 2~ — 1. It follows that there are 2" — (n+1) — (2" —1) =2""1 —n
permutations o € S5,, that have one descent and start with 1. Next we have to determine the number
of permutations of S, that have one descent and start with 1 which have a 1p23...(p — 1)-match.
Clearly if n < p, then there are no o € S,, such that des(c) = 1 and o has a 1p23...(p — 1)-match.
If 1 € A and 04, does have 1p23...(p — 1)-match, then the largest 2 elements of A must play the
role of 1 and p in the 1p23...(p — 1)-match in o4 and first (p — 2) elements of {1,...,n} — A must
play the role of 2...(p — 1) in the 1p23...(p — 1)-match in o4. It follows that all but the largest
element of A must be smaller than all the elements {1,...,n} — A and the first (p — 2) elements
of {1,...,n} — A must be smaller than the largest element of A. Hence o4, must be of the form
l...s(s+1)x(s+2)(s+3)...(s+p—1)... where x > (s+p—1) for some 0 < s <n—p. Thus for
any given s, we have n — (s + p — 1) choices for z. Hence if n > p, the number of o € S,, which have
one descent, start with 1, and have one 1p23... (p — 1)-match is

S (st p1)) = ("),

s=0

It then follows that for all p > 4,

on=1 _ n forn<p
NMip2z..p—1,0(T,Y) | py2 = {2n_1 o (n—p+2

5 ) for n > p.

3.3 Proof of Theorem 1.2

Let 7=13...(p — 1)2p where p > 4. Then we want to show that U, ;(y) = —y and for n > 2,

=2 )
Urn) = (1= 000+ X 0 gt ("7 )t men) (09)
k=1

Again we must study the fixed points of I for 7 = 13... (p — 1)2p where p > 4.
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Let O = (B, o) be a fixed point of I, where B = (by,...,b;) and 0 = 071...0,. By Lemma 3.1,
we know that o1 = 1. We claim that o9 = 2 or 0,1 = 2. To show this, suppose that . = 2 where
¢ ¢ {2,p — 1}. Since there are no descents within any brick, 2 must be in the first cell of a brick.
Moreover, since the minimal elements in the bricks of O form an increasing sequence, reading from left
to right, 2 must be in the first cell of by. Thus 1 is in the first cell of b; and 2 is in the first cell of bs.
Then there is a descent between the last cell of b; and the first cell of b. By Lemma 3.1, this means
that there is a 7-match in o contained in the cells in bricks b; and by that involves the element in the
last cell of b1, namely o._1, and the element in the first cell of by, namely o, = 2. Clearly, 0. must
play the role of 2 in the 7-match which means that the 7-match starts at cell 1 since only 1 can play
the role of the 1 in the 7-match. But then it follows that ¢ must be equal to (p — 1) which contradicts
our choice of ¢. Hence it must be the case that 0. = 2 where ¢ € {2,p — 1}. Thus we have two cases
to consider.

Case I. 09 = 2.

In this case, we can use the same argument that we used in Case 1 above to show that the fixed
points in Case I will contribute (1 — y)Urpn—1(y) to Urpn(y).

Case IL. 0,1 = 2.

Then o,_1 must be the first cell of by so that by has p — 2 cells and 0,2 > op—1 = 2. By condi-
tion 3 of Lemma 3.1, there must be a 7-match that involves o,_2 and 0,1 contained in the cells of by
and by which means that by must contain at least 2 cells. We now have two subcases based on whether
or not there is a 7-match in O starting at cell (p — 1).

Subcase II.1. There is no 7-match in O starting at cell (p —1).

We claim that o, = p. First observe that o, must be greater than or equal to o1,...,0,-1 since
there is a 7-match starting at cell 1. Thus o, > p. If 0, > p, then p cannot be in brick by. Since
brick b1 has p — 2 cells and 1 is in by, we cannot have all of the integers 3,...,p in by so let ¢ be the
least integer in {3,...,p} which is not in b;. Since o, > p, we know ¢ cannot be in brick by. Since
the minimal elements in the bricks are increasing, it must be the case that ¢ is in the first cell of brick
bs and there is a descent between the last cell of by and the first cell of b3. This implies that there is
a T-match that includes the last cell of by and the first cell of b3. Since we are assuming there is no
T-match starting at cell p — 1, this 7-match must start at some cell ¢ where ¢ > p — 1. But this is
impossible since ¢ which is in the first cell of b3 must play the role of 2 in that 7-match and o, must
play the role of 1 in that 7-match and we know that i < p < 0, < 0.. Hence it must be the case that
op = p which forces that oy...0, =13...(p — 1)2p.

Then it is not hard to check that red,_;(O) satisfies conditions (1), (2), and (3) of Lemma 3.1 and
hence it is a fixed point of I in O, ,_¢,—1) such that W(0) = yW(0O') and sgn(0) = —sgn(0’). Vice
versa, if we are given a fixed point of O’ = (B’,0") € O, ;,_(,—1) of I satisfying conditions (1), (2), and
(3) of Lemma 3.1 where B’ = (b},...,b.) and o' =0 ... 0;_(17_1), then we can construct a fixed point
O = (B,0) € O, of I such that O has a 7-match starting at cell 1 but does not have a T-match start-
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ing at cell (p—1), be letting B = (p—2,2+by,...,b5) and 0 = 13... (p—1)2p(c+p) ... (0},_, 1 +D).
It follows that fixed points in Subcase I1.1 will contribute (=y)Us ,—p—1)(y) to Urn(y)-

Subcase II.2. There is a 7-match starting at cell (p — 1).

In this case, it must be that op,—1 < 09,3 < 0p < -+ < 09p—4. We claim that by must be of
size p — 2. Clearly, by has at most p — 2 cells since the elements in each brick are increasing and
O9p—a > 02p—3. Now if by has less than p — 2 cells, then cell (2p —3) must be the first cell of some brick
by and brick bx_; would have less than p — 2 cells. Then all the elements in b;_; are strictly larger
than the first element of by so that it would not be possible to have a 7-match contained in the bricks
bir—1 and b, which would contradict the fact that O is a fixed point of I by Lemma 3.1. Thus brick
by has p — 2 cells which, in turn, implies that brick b3 must have at least 2 cells. That is, if b3 has less
than 2 cells, there could be no 7-match among the cells of by and b3 even though there is a descent
between the last cell of by and the first cell of b3 violating the fact that O is a fixed point of I,.

Notice here that there is a 7-match that starts at cell 1 and another one that starts at cell (p — 1).
These two 7-matches overlap on the cells (p — 1) and p. In general, assume that there is a chain
of 7-matches starting at cell 1 that each overlap by two cells. Suppose there are exactly &k — 1 such
7-matches in this chain. Then the jth 7-match starts at the first cell of brick b;. Brick b; must have
p — 2 cells for each 1 < j < k — 1 and brick by must have at least 2 cells. Let r; be an integer such
that the jth 7-match starts at cell ;. Then it follows that 7; =14 (j —1)(p—2) for 1 < j <k —1.
Define r, = 1+ (k — 1)(p — 2) and assume that O does not have a 7-match starting at cell rj.

Next we claim that oy, 41 = rg+1and {o1,...,0,0r,+1} = {1,...,7+1}. That is, since there are
T-matches starting at positions rq,79,...,7r_1, we have that OrjyevesOrjy < Opjii+1 foreach 1 < j <
k—1. It follows that o, 41 is greater than o; for i = 1,..., 7 so that o, 41 > 7 +1. For a contradiction,
assume that oy, 11 > 7+ 1. It then follows that there is at least one ¢ € {1,...,r;+1} which does not
appear in the first r; + 1 cells of O so let j be the least element in {1,...,7 + 1} —{o1,..., 00,41}
Then j cannot lie in brick by because j < o,,41 and brick by starts at cell ry + 1 so that j must be
in the first cell of brick bgy1. Thus there is a descent between the last cell of by and the first cell of
bi+1. But then we claim that there can be no 7-match that includes the last cell of by the first cell of
bp+1. That is, we are assuming that there is no 7-match starting at cell v, in O. Thus if there is a
T-match contained in the cells of by and b1, it must start after position r; and involve j. But j is
less than all the integers in brick by that appear after cell 7, which means that none of them can play
the role of 1 in such a 7-match. This violates the fact that O is a fixed point of I,. Thus it must be
the case that o, 41 = r + 1. Since o, 41 is greater than o; for ¢ = 1,...,r}, it automatically follows
that {0'1, ce 707“k+1} = {1, o, T+ 1}.

It is then easy to check that O’ =red,, (O) satisfies conditions (1), (2), and (3) of Lemma 3.1 and
hence it is a fixed point of I in O;,_,, . Moreover, since each of the first £ — 1 bricks contributes a
factor of —y to sgn(O)W (O), we have that sgn(O" )W (0’) = (—y)*tsgn(O)W (O). On the other hand,
if we start with fixed point O" = (B',0") € Oy, of I where B’ = (b),...,0;) and o' =07 ...05,_, ,
then we can create an O = (B,0) € O, satisfying conditions (1), (2), and (3) of Lemma 3.1 which
necessarily will be a fixed point of I, where O has T-matches starting at positions 1,79,...,7r,_1 but
not at rj by letting o = o1...00,41(rk +03) ... (rx + 05,_,, ) where o1...0,, 41 is a permutation of
Sy.+1 which has T7-matches starting at positions 1,79, ...,7,_1 and letting B start out with & —1 bricks
of size p — 2 followed by a brick of size p — 2+ b followed by b5, ..., 0,. It follows that the contribution
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of such fixed points to Uy, (y) is (—y)k_lekHUT,n_(k_l)(p_g)H)(y) where D ,, 41 is the number of
o € Sy, +1 such that there are 7-matches in o starting at positions 1,79,...,7p_1.

Fortunately, Harmse proved a formula in his thesis [10] from which we can obtain a formula for
Dy 41 for any 7 =13...(p — 1)2p where p > 4. In particular, this formula was needed for the study
of column strict fillings of rectangular shapes initiated by Harmse and the second author [11]. That is,
Harmse and the second author [11] defined 7, ;, to be the set of all fillings of a k x n rectangular array
with the integers 1,...,kn such that that the elements increase from bottom to top in each column.
We let (i,7) denote the cell in the " row from the bottom and the j' column from the left of the
k x n rectangle and we let F'(i, j) denote the element in cell (i,7) of F' € F,, .

Given a partition A = (Aq,...,A\g) where 0 < Ay < -+ < )\, we let F) denote the Ferrers diagram
of X, i.e. F) is the set of left-justified rows of squares where the size of the i-th row is A;. Thus a
k x n rectangular array corresponds to the Ferrers diagram corresponding to (n¥). If F € Fok and the
integers are increasing in each row, reading from left to right, then F' is a standard tableau of shape
(n). We let St,x denote the set of all standard tableaux of shape (n*) and let st,x = |St,x|. One can
use the Frame-Robinson-Thrall hook formula [8] to show that

(kn)!

where (n) lo=1and (n) ly=n(n—1)---(n—k+1) for k > 0.

If F' is any filling of a (k x n)-rectangle with distinct positive integers such that elements in each
column increase, reading from bottom to top, then we let red(F’) denote the element of F, ; which
results from F' by replacing the i*® smallest element of F by i. For example, Figure 7 demonstrates a
filling, F', with its corresponding reduced filling, red(F).

(20)

Stk =

12116|22 7 110(12

8 |15(17 51911
F red(F)

6 (10[13 31618

175 142

Figure 7: An example of F' € F34 and red(F).

IfFeF,pand1 < ¢ <--- <c¢j <n,then welet Fley,...,cj] be the filling of the (k x j)-rectangle
where the elements in column a of Fley, ..., ¢;| equal the elements in column ¢, in F fora =1,..., 7.
Let P be an element of 7}, and F' € F,, ;, where j < n. Then we say there is a P-match in I starting
at position i if red(F[i,i+1,...,i4+ j —1]) = P. We let P-mch(F') denote the number of P-matches
in F.

If P € Fy, then we define MPp,, to be the set of F' € F,, ¢ such that P-mch(F) =n — 1, i.e.
the set of ' € F,, s such that there is a P-match in I starting at positions 1,2,...,n — 1. Elements
of MPp,, are called maximum packings for P. We let mpp,, = |[MPp,| and use the convention that
mpp1 = 1. For example, if P is the element of /5 that has the integers 1,...,s in the first column
and the integers s +1,...,2s in the second column, then it follows that mpp, = 1 for all n > 1, since
the only element of F' € F,, j with P-mch(F) = n — 1 has the integers (i —1)s+1,...,(i —1)s+sin
the i-th column, for ¢ = 1,...,n. Harmse and the second author [11] proved that the computation of
the generating function for the number of P-matches in F), ; can be reduced to computing mpp,, for
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all n so that they computed mpp,, for various P € F5. In particular, let P; € Stas be the standard
tableau which has 1,3,4,...,s+ 1 in the first column and 2,5+ 2,5+ 3,...,2s in the second column.
For example, Ps is pictured in Figure 8.

R W s~ Oo
N (N[00 |©

Figure 8: The standard tableau Fs.

Then Harmse proved that for s,n > 2,

MPPn = ¢ ! <S(n i 1)> (21)

s—1(n—-1)+1\ n—1

We claim that we can use (21) to obtain our desired formula for D, , 41. That is, suppose that
s,n > 2and F' € MPp,,. Then in F, the top s — 1 elements of column ¢ where ¢ > 1 are larger
than any of the elements in column ¢ — 1 and are greater than or equal to F'(1,7). It follows that the
top s — 1 elements in column n are greater than all the remaining elements in F' so that they must
be s(n —1) +2,s(n — 1) + 3,...,sn reading from bottom to top. Given such an F', we let o be the
permutation in S,(,_1)42 where

op =F(1,1)F(2,1)... F(s,1)... F(l,n — 1)F(2,n —1)... F(s,n — 1)F(1,n)F(2,n).

For example, if F' is the element of MP p, 4 pictured at the top of Figure 9, then o is pictured at the
bottom of Figure 9.

12| 16| 20
11| 15|19
10| 14| 18

9|13 17
2137

n
1]
R OO |0

Op = 145 6 8 2 9101112 3 13 14 1516 7

Figure 9: An example of op.

Then it follows that if ' € MPp, p, then op is a permutation in Sy, 1) which has 1 3... (s —
1) 2 s-matches starting at positions 1+ (s —2)(j — 1) for j = 1,...,n — 1. Vice versa, if 0 € Sy,_1)42
is a permutation which has 1 3...(s — 1) 2 s-matches starting at positions 1 + (s — 2)(j — 1) for
j=1,...,n—1, then we can create a filling of F,, € MPp, ,, by letting r'* column of F consist of
Tg(r—1)+1s - - - s Os(r—1)+s, reading from bottom to top, for r = 1,...,n — 1 and letting the nt* column
consist of o —1)41, Ts(n_1)+2,5(n — 1) +3,..., sn, reading from bottom to top. It then follows from
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21) that the number of permutations ¢ € S,_1y(p—1)+2 that have 1 3... (p—1) 2 p-matches starting at
(k=) (p—1)+
positions 1+(p—2)(j—1) forj=1,...,k—11s m((k_;)ﬁ)_l)). Henceif r=13...(p—1)2p,
then
1 (k—=1)(p—1)
Drrk—i—l = .
’ p—2)(k—1)+1 k—1

Thus the contribution to U, (y) of those fixed points O such that the bricks by,...,by_; all have p—2
cells and there is a 7-match starting at cell 7; for 1 < j < k — 1, but there is no 7-match starting at
position 7, = (k —1)(p — 2) + 1 is

1 E—1D(p—1
- (p—2)(k—1)+1 <( k )_(pl )> Urn—((h-1)(p-2)+1) (¥)-

Hence we have shown that if 7 =13...(p — 1)2p where p > 4, then U, ;(y) = —y and for n > 2,

=2 )
Urn) = =00+ X 0 gt (O )t 22)
k=1

This proves Theorem 1.2.

In Tables 8-13 in Appendix 1, we have also computed the values of the polynomials
U13...(p—1)2p,n(y) and NMlgm(p_l)Qp’n(x, y) for n < 8 and p= 4, 5, 6.

Again, we explain several of these coefficients. For example, the same argument that we used to
prove that NMyyo . (y—1)n(Z,Y)|pkye = S(n, k) will prove that

NM13...,(p—1)2p,n($a y)|mkyk = S(TL, k)
We claim that for p > 4,

on=l _p if n < p and

NM13...(p—1)2p,n(x7 y)’xyz = { (23)

ol _on4+p—1 ifn>p.

That is, suppose that o € S, contributes to N M3 (p—1)2p.n (%, Y)|zy2. Then o must have 1 left-to-right
minima and one descent. It follows that ¢ must start with 1 and have one descent. We have shown
that there are 2"~! — n permutations that start with 1 and have 1 descent. Next consider when such a
o which starts with 1 and has 1 descent can have a 13... (p—1)2p-match. If the 13... (p — 1)2p-match
starts at position ¢, then it must be the case that o;4,-3 > 054,—2. Thus it follows that o1,...,0,4p—3
and ojyp_2,...,0p are increasing sequences. But the fact that there is a 13... (p—1)2p-match starting
at position ¢ also implies that o; < 0;4p,—2. It follows that 1,...,0; — 1 must proceed o; which implies
that o; = ¢. But since ;4,1 is greater than o;11,...,044p—3, it follows that 04,2 =74 1 and

Oit1 =1+2,,0i43=1+3,...,0i4p-3=1+p—2.

Thus there is only one such o which has 13...(p — 1)2p-match starting at position i. As i can vary
from 1 to n —p+ 1, it follows that there are n —p + 1 permutations o which starts with 1 and have 1
descent and contain a 13... (p — 1)2p-match. Hence (23) holds.
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4 Conclusions and some problems for further research.

We have proved that the polynomials Uspas. (p—1),n(y) and Uiss (p—1)2pn(y) satisfy simple recur-
sions and that these recursions allow us to compute the initial terms in the generating functions
NMipos...p-1)(t, 2,y) and N Mgy, (p—1)2p(t, 2, y) for p > 4.

It is easy to see that the polynomials Uypoz. (p—1)n(—y) and Uisy. (p—1)2p,n(—¥) are polynomials
with non-negative integer coefficients. We have computed extensive tables of these polynomials and all
the polynomials that we have computed are log-concave. Here a polynomial P(y) = ap+ai1y+- - -+a,y”
is called log-concave if foralli=2...n —1, aj_1a;41 < a% and it is called unimodal if there exists an
index k such that a; < a;q4q forie=1...k—1 and a; > a;41 for i = k...n — 1. Thus for any p > 4,
we conjecture that the polynomials Uypos.. (p—1),n(—¥) and Uysy.. (p—1)2p,n(—¥) are log-concave.

We have computed U, -(—y) for many permutations that start with 1. Out of all the patterns 7
that start with 1 and have exactly one descent that we have looked at, all of the polynomials U ,,(—y)
seem to be unimodal but not necessarily log-concave. For instance, the authors in [12] showed if
7 = 1342 then
n—2

Uizazn(y) = (1 — y)Uizazn—1(y) — y< 9

>U1342,n—3(y)

and the coefficients of 3’ in Uiza2,n(—y) are given in Table 1.

Table 1: Coefficients of Uiz n(—y)
‘ Coefficients of 4 in Uyz42,,(—Y) ‘

i=1 2 3 4 5 6 7 8 9 10
n=1 1
2 1 1
3 1 2 1
4 1 4 3 1
5 1 8 10 4 1
6 1 15 30 20 5 1
7 1 26 85 80 35 6 1
8 1 42 231 315 175 56 7 1
9 1 64 588 1176 910 336 &4 8 1
10 1 93 1380 4144 4326 2226 588 120 9 1

Notice that in row 8 and columns 6, 7,8, (56)(1) > 72. Hence, there are polynomials Ujz42 n(—y)
that are not log-concave. Thus it would be interesting to see whether our recursions can be used to
prove that the polynomials Uyyos. (p—1),n(—¥) and Uiy, (p—1)2p,n(—¥) are log-concave.

If we set y = 1, then our results show that the Uy (p—1),5, (1) and the U3, (p—1)2p,» (1) satisfy simple
recursions. Nevertheless, it seems that the sequences (Uipa.. (p—1),n(1))n>1 and (Uis..(p—1)2p,n(1))n>1
are quite complicated. In fact, these sequences are not even monotone when we take absolute values.
For example, the initial 27 terms of the sequence (Uisa34,n(1))n>1 are

-1,0,0,0,1,0,0,-1,-5,0,1,23,45, -1, —82, —501, —584, 270, 3849, 12110, 9081, —25547,
—161741, —328989, —50941, 1784059, 6821610, . ..
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and the initial 27 terms of the sequence (U324, (1))n>1 are

~1,0,0,1,0, —3,—1,12,6, —54, —33, 264, 181, —1365, — 1008, 7345, 5712, —40713, —32890,
230886, 192045, —1333309, —1134912, 7813629, 6776639, —46351500, —40827423, . . . .

A more general problem is to extend our method to the case of permutations that start with 1 but
have more that one descent. The problem in this case is that the map I is not an involution. That
is, it is possible that when we split a brick b into two bricks ' and b” at cell ¢ labeled y, then it may
be the case that ' can be combined with the brick b~ just before b because there is a descent between
those bricks and there is no 7-match in the cells of b~ and " while there was a 7-match in the cells of
b~ and b so that we cannot combine b~ and b. Thus we can not use such a cell ¢ to define an involution
because we want the cases to be reversible. This means that we can not use such a cell ¢ to define
an involution so that we have to restrict ourselves to those cells ¢ which are labeled with y where it
is not possible to combine b~ and b'. This makes the definition of our involution more complicated
and hence it is more difficult to analyze the fixed points of such involutions. Nevertheless, there is at
least one special case where we can still carry out the analysis. Namely, the first author has shown
Uts243,1(y) = —y and for n > 2,

|25 ]
n—k—1
Uis2a3n(y) = (1 = y)Uis243,0—1(y) + y(—y)k_1< 3 >U15243,n—2k(y)-
k=2
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Appendix: The polynomials Uj,o3 . (p—1)n(¥)s NMips. .(p—1)n(,9)s Uis.. . (p—1)2p,n(¥), and

NMs. p—1)2pn (T, Y)-

Table 2: Coefficients of ' in Uyge3.,(y)
1 =1 2 3 4 5% 6 7 8 9 10

—

L

| (N
do
—

-9 4 -1

-1 11 =23 16 ) 1

-1 16 -53 54 =25 6 -1

0| | o | x| wo| o] ||

-1 22 -110 165 —-105 36 -7 1

I
—_

Table 3: The polynomials N Mi423.,(z,y)
Ty

xy+x2y2

zy+axy’+322y° + 23 y°

xy—|—33:y2+73:2y2—|—xy3—|—4:£2y3+6:£3y3+3:4y4

ol w3

vy +8xy’ + 1522 y? + 9z + 25223 + 252397 +xyt+
52yt + 1023 y* + 102 y* + 2590

ry+20xy? +312%y? + 462y + 11322 3> + 9023 9% + 2309 + 7922 ¢yt +
10523 y* + 65z y* + 29> +622y° + 1523 9% + 202t y® + 1525 95 + 2646

zy+47xy% + 6327y + 2002y + 448 22 > + 301 23 ¢ + 219z y* + 651 2% v+
728 23 yt 4+ 350 2%y + 53w y® + 217 2%y 4+ 36423 17 + 31524 y° + 14025 0+
xS +72%yS + 212390 + 3524 8 + 3520 b + 212090 + 2747

vy + 105z y% + 12722 y? + 794 2 y3 + 1650 22 y3 + 966 2> > + 1547 x y* +
4225 22 y* + 4214 23 y* + 1701 21 y* + 919 2 y° + 3166 22 y° + 4410 23 y5+
3108 2% y® + 1050 2° 9° + 1152y + 543 22 40 + 1092 22 ¢ + 1204 2 5+
7702 b 4+ 26620 40 + 2 y” + 822 y" + 2823y 4+ 56 21 y7 + 702y +
56 28 47 + 2827 y7 + 2848
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Table 4: Coefficients of y* in Uysasan(y)
1=1 2 3 4 5 6 7 &8 9 10 11

[

R
Ol WM+~
&

—_

-1 12 =27 26 -15 6 -1

0| | o] | x| ol o] ||

-1 17 =52 65 —-45 21 -7 1

Table 5: The polynomials N Mis234,(x,y)
zy

xy+x2y2

ry+ay? +322y% + 233

vy+dzy’ + 722y + oy +422yP + 6237 +atyt

o |wl|s

zy+10xy? + 1522 y> + 11xy> + 3022 3> + 2523 43 + oyt + 522 ¢+
1023 y* + 102t y* + 25 ¢

ry+23zy? +312%y? + 632y + 14022 3> + 9023 9% + 26z y* + 91 22 y*+
12023 y* +652% y* + 29® +6229° + 1523 9> + 202 ¢® + 1520 5 4 2640

vy +51lxy? +6327y% + 27229 + 546 22 y3 + 301 27 y3 + 296 2 y* +
847 22 y* 4+ 875 23 y* 4+ 350 2t y* + 57 x y® + 238 22 y° + 406 2> y° + 350 2t O+
1402° > + 2 yS + 72290 + 2123 yb + 3524 48 + 352540 + 212590 + 2747

zy+ 110z y% + 12722 y2 + 1034z > + 1948 22 43 + 966 x> y> + 2258 z y 1+
5746 22 y* + 5124 23 y* + 1701 2% y* + 1181 2 9® + 4048 2% ¢° + 5502 23 >+
3640 2% y® + 1050 2% ° + 1202y + 57522 40 + 1176 2 yb + 1316 24 5+
840 2° 1% + 26625 0 + 2 y” + 822 y" + 2823 ¢y + 562t y” + T02° y T+
56 28 47 + 2827 y7 + 2848

Table 6: Coefficients of ¢ in Ui62345,n(Y)
1=1 2 3 4 5 6 7T 8 9 10 11

—_

-1

-10 10 -5 1

|
—_
O | k| w| ol
|
=)

-18 20 —-15 6 -1

oo| | o] | x| o o] ||

-1 13 =33 41 =35 21 -7 1
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Table 7: The polynomials N Mjig2345 (2, y)
Ty

a:y—l—a:2y2

ry+axy’+322y° + a3 y°

a:y—|—4a:y2+7a:2y2—|—xy3—|—4:£2y3+6:£3y3+a:4y4

o ||| 3

cy+1lay? +1527y2 + 1lxys +302%y° + 2523 45 + 9y + 522 y+
1023 y* + 102 y* + 2590

zy+252y2 + 3122 y2 + 662 y° + 146 22 y3 + 9027 y3 + 26 x v+
9122yt + 12023 y* + 6524y +29® + 622y + 1523 45 + 2024 92+
1522 3% + 2690

vy +54xy® + 632792 + 298 x> + 58122 y3 + 30127 y3 + 3022yt +
868 22yt + 896 23 y* + 350t y* + 572y + 238 22 9° + 406 23 y°+
3502 4 4+ 14025 45 + 2y + 72?90 + 21 23 5 + 3524 0 + 3527 40+
21$6y6 +ZL’7y7

zy+ 114zy® + 12722 y> + 1151z 9> + 2084 2% > + 966 23 3+

2406 z y* + 6094 22 y* + 5348 23 y* + 1701 2* y* + 1191 2 5 + 4096 22 5+
5586 23 y° + 3696 2 y® + 1050 2° y® + 120298 + 57522 ¢ + 1176 23 5+
1316 2% 45 + 840 2° 18 4266 26 40 + x 7 + 822 y7 + 2823 y7 + 56 2% 47+
702° 47 + 56 28 y7 + 2827 47 + 2848

Table 8: Coefficients of ¥ in Uy324.n(y)
1=1 2 3 4 5 6 7 8 9 10 11

—_

-8 4 -1

L
|| = DN~
&

—

-19 13 -5 1

-1 10 -34 38 -19 6 -1

oo| | | | x| wo| b ||

-1 12 =53 98 —-64 26 -7 1
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Table 9: The polynomials N Mj324 (2, y)

n=1|zy

2 a:y—l—a:2y2

3 ry+axy’+322y° + a3 y°

4 ry+3zy’ + 722y +ayd 422y + 6237 +atyt

5 ry+ 92y’ + 1522 y? +8xy® + 25223 + 2523 9% +ayt + 522yt + 1023yt
102t y* + 259

6 ry+23xy> +31x2y® + 482> + 11922 > + 9023 4% + 20y + 7322 ¢+
10523yt + 652yt + 295 + 622 y5 + 1523 9> + 202t y® + 1525 y° + 20 ¢/O

7 ry+53zy? + 6322 y? + 2232y + 49022 y3 + 301 23 43 + 207 vyt +

644 2% y* + 74923 y* + 3502t y* + 472y + 196 2% 3° + 34323 % + 31524 0+
1402° 5 + 2 yS + T2 y® + 2123 9% + 3521y + 3525 y8 + 212090 + 277

8 zy+ 115z 9% + 12722 y> + 925 2 3 + 183822 y3 + 966 2> > + 1602 x y* +
4465 2% y* + 4466 23 y* + 1701 2 y* + 810 2 y® + 2930 22 y° + 4298 23 5+
3164 21 y° + 1050 2° y° + 1052 y® + 495 22 ¥ + 1008 23 ¢ + 1148 21 0+
770 2% 45 + 26625 45 + xy” + 822 y” + 2823 y7 + 5621y + 7025y +
56 25 47 + 2827 y7 4 288

Table 10: Coefficients of y* in Ui3425.5(y)
1=1 2 3 4 5 6 7T 8 9 10 11

—_
|
—_

-6 4 -1

-12 10 -5 1

-21 23 -15 6 -1
-1 11 =37 47 -39 21 -7 1

0| | o | x| ol o] ||
[
—

©o| | o w| o=
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Table 11: The polynomials N Miz425 (2, y)
Ty

a:y—l—a:2y2

ry+axy’+322y° + a3 y°

zy+dcy? + 722+ +422y3 + 62393 + 2t )t

SN FIEC

vy +10xy? + 152292 + 11ay3 + 3022 9% + 2523 3 + w9y + 522+
1023 y* + 102t y* + 2590

cy+24zy?+3127y%2 +62xy° + 14022 y3 + 9025 4% + 26 x y* + 91 22 ¢y +
12023yt + 652yt + 295 + 622 y5 + 1523 9> + 202t y® + 1525 y° + 20 ¢/O

ry+5dzy? + 6322 y? + 2732 y> + 55322 y3 + 301 2% 43 + 292w yt+
840 2% y* + 87523 y* + 350 2t y* + 57z y° + 238 2% 4° + 406 23 y° + 350 2 P+
1402° 5 + 2 yS + T2 y® + 2123 9% + 3521y + 3525 y8 + 212090 + 277

ry+ 116z y? + 12722 y% + 1071 2y + 2000 22 3> + 966 23 3> + 2228 x y* +
5726 22 y* + 515223 y* + 1701 2 y* + 117129 + 4016 2% ¢° + 5474 23 P+
3640 z* y° + 1050 2° y° 4+ 120w y® + 57522 y® + 1176 23 y© + 1316 2 35+
840 2° 30 + 266 25 40 + 2 y” + 822 y" + 2823 7T + 562t y” + T02° yT+
56 25 47 + 2827 y7 4 288

Table 12: Coefficients of y* in Ui34526.n ()
1=1 2 3 4 5 6 7T 8 9 10 11

—_

4 -1

-10 10 -5 1

|
—_
| o x| w| | =
|
N

-17 20 -15 6 -1

0| | o | x| ol o] ||

-1 10 -27 38 =35 21 -7 1
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Table 13: The polynomials N Mi34526. (2, y)
Ty

xy+x2y2

ry+ay? +322y% + 233

vy+dzy’ + 722y + oy +422yP + 6237 +atyt

o |wln|s

cy+1lazy? +1522y2 + 1laxy> +302%29y° + 2523y + oy + 522 y*+
1023 y* + 10 2% y* + 25 ¢°

ry+25xy? + 3122 y? + 662y + 14622 3> + 9023 9% + 26z y* + 91 22 ¢+
12023 y* + 6524 y* + 29 +622y° + 1523 9% + 202t y® + 1525 95 + 2648

ry+55xy® +6327y% + 2972y + 58122 y3 + 30127 y3 + 3022y +
868 22 y* 4 896 23 y* + 350 2t y* + 57 x y° + 238 22 y° + 406 2> y° + 350 2t o+
1402° y° + 2wy® + 72290 + 212390 + 3524 98 + 3525 y6 + 2120 8 + 27y

cy+ 117z y% + 12722 y2 + 1153 24> + 2092 22 y3 + 966 2> y> + 2401 z y*+
6086 22 y* + 5348 23 y* + 1701 2% y* + 1191 2 y° 4 4096 22 y° + 5586 2 y°+
3696 2% y° + 1050 2% ° + 1202y + 57522 40 + 1176 22 yb + 1316 24 5+
840 2° 1% + 26625 0 + 2 y” + 822 y" + 2823 ¢y + 562t y” + T02° y T+

56 28 47 + 2827 y7 + 2848




