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Abstra
t. We study the generating fun
tion

∑

n≥0
tn

n!

∑

σ∈NMn(τ) x
LRmin(σ)y1+des(σ)

where NMn(τ ) is the set of

permutations σ in the symmetri
 group Sn whi
h have no 
onse
utive o

urren
es of τ , τ is of the form 1p2 . . . (p− 1) or
13 . . . (p−1)2p for some p ≥ 4, des(σ) is the number of des
ents of σ and LRmin(σ) is the number of left-to-right minima

of σ. We show that for any p ≥ 4, this generating fun
tion is of the form

(

1
Uτ (t,y)

)x

where Uτ (t, y) =
∑

n≥0 Uτ,n(y)
tn

n!

and the 
oe�
ients Uτ,n(y) satisfy some simple re
ursions depending on p.
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1 Introdu
tion

Given a sequen
e σ = σ1 . . . σn of distin
t integers, let the redu
tion of σ, red(σ), be the permutation
found by repla
ing the ith largest integer that appears in σ by i. For example, if σ = 2 7 5 4, then
red(σ) = 1 4 3 2. Given a permutation τ = τ1 . . . τp in the symmetri
 group Sp, we say a permutation

σ = σ1 . . . σn ∈ Sn has a τ -mat
h starting at position i provided red(σi . . . σi+p−1) = τ . Let τ -mch(σ)
be the number of τ -mat
hes in the permutation σ. Given a permutation σ = σ1 . . . σn ∈ Sn, we let

des(σ) = |{i : σi > σi+1}|. We say that σj is a left-to-right minimum of σ if σj < σi for all i < j. We

let LRmin(σ) denote the number of left-to-right minima of σ.
The main obje
t of study in this paper is the generating fun
tion

NMτ (t, x, y) =
∑

n≥0

NMτ,n(x, y)
tn

n!
(1)
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where NMn(τ) is the set of permutations in Sn with no τ -mat
hes and

NMτ,n(x, y) =
∑

σ∈NMn(τ)

xLRmin(σ)y1+des(σ). (2)

In parti
ular, the main goal of this paper is to 
ompute the generating fun
tion NMτ (t, x, y) and the

polynomials NMτ,n(x, y) for two in�nite families of permutations, namely, τ of the form 1p23 . . . (p−1)
and τ of the form 13 . . . (p − 1)2p where p ≥ 4. There are a number of methods that have appeared

in the literature to study the generating fun
tions for either the distribution of τ -mat
hes in Sn, see

[9, 5, 20, 24, 16℄, as well as methods to �nd the number of permutations of Sn with no τ -mat
hes, see

[6, 1, 17, 15℄. None of these approa
hes tries to study the re�ned generating fun
tion NMτ,n(x, y).
Instead, we shall use the so-
alled re
ipro
ity method introdu
ed by the authors in [14℄ to 
ompute

generating fun
tions of the form NMτ (t, x, y) where τ is a permutation whi
h starts with 1. In

parti
ular, the authors [14℄ proved that in su
h a situation, one 
an always write the generating

fun
tion NMτ (t, x, y) as

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
. (3)

Thus

Uτ (t, y) =
1

1 +
∑

n≥1NMτ,n(1, y)
tn

n!

. (4)

One 
an then use the homomorphism method to give a 
ombinatorial interpretation the right-hand

side of (4) whi
h 
an be used to �nd simple re
ursions for the 
oe�
ients Uτ,n(y). The homomorphism

method derives generating fun
tions for various permutation statisti
s by applying a ring homomor-

phism de�ned on the ring of symmetri
 fun
tions Λ in in�nitely many variables x1, x2, . . . to simple

symmetri
 fun
tion identities su
h as

H(t) = 1/E(−t) (5)

where H(t) and E(t) are the generating fun
tions for the homogeneous and elementary symmetri


fun
tions, respe
tively:

H(t) =
∑

n≥0

hnt
n =

∏

i≥1

1

1− xit
, E(t) =

∑

n≥0

ent
n =

∏

i≥1

1 + xit. (6)

See, for example, [2, 18, 19, 20, 21, 22, 23℄. In our 
ase, we de�ne a homomorphism θ on Λ by setting

θ(en) =
(−1)n

n!
NMτ,n(1, y).

Then

θ(E(−t)) =
∑

n≥0

NMτ,n(1, y)
tn

n!
=

1

Uτ (t, y)
.

Hen
e

Uτ (t, y) =
1

θ(E(−t))
= θ(H(t))
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whi
h implies that

n!θ(hn) = Uτ,n(y). (7)

Thus if we 
an 
ompute n!θ(hn) for all n ≥ 1, then we 
an 
ompute the polynomials Uτ,n(y) and the

generating fun
tion Uτ (t, y) whi
h in turn allows us to 
ompute the generating fun
tion NMτ (t, x, y).

In [14℄, the authors studied the generating fun
tions Uτ (t, y) for permutations τ of the form τ =
1324 . . . p where p ≥ 4. That is, τ arises from the identity permutation by transposing 2 and 3. Using

the homomorphism method, the authors [14℄ proved that U1324,1(y) = −y and for n ≥ 2,

U1324,n(y) = (1− y)U1324,n−1(y) +

⌊n/2⌋
∑

k=2

(−y)k−1Ck−1U1324,n−2k+1(y) (8)

where Ck = 1
k+1

(2k
k

)
is the k-th Catalan number. They also proved that for any p ≥ 5, U1324...p,n(y) =

−y and for n ≥ 2,

U1324...p,n(y) = (1− y)U1324...p,n−1(y) +

⌊n−2
p−2

⌋+1
∑

k=2

(−y)k−1U1324...p,n−((k−1)(p−2)+1)(y). (9)

The main goal of this paper is to prove the following two theorems.

Theorem 1.1 Let τ = 1p23 . . . (p− 1) where p ≥ 4. Then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
,

Uτ,1(y) = −y, and, for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋+1
∑

k=2

(−y)k−1

(
n− (k − 1)(p − 3)− 2

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y).

We note that the spe
ial 
ase of Theorem 1.1 where p = 4 was proved in the extended abstra
t

[13℄.

Theorem 1.2 Let τ = 13 . . . (p− 1)2p where p ≥ 4. Then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
,

Uτ,1(y) = −y, and, for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋
∑

k=1

(−y)k
1

(p− 2)k + 1

(
k(p− 1)

k

)

Uτ,n−(k(p−2)+1)(y). (10)
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For p ≥ 5, these two re
ursions are more 
ompli
ated than the re
ursion for τ of the form 1324 . . . p
given in (9) in that the re
ursions for τ of the form 1p23 . . . (p − 1) involve binomial 
oe�
ients and

the re
ursions for τ of the form 13 . . . (p− 1)2p involve 
oe�
ients whi
h 
ount the number of (p− 1)-
ary trees. In all three 
ases des
ribed above, 
omputational eviden
e suggests that the polynomials

Uτ,n(−y) are log-
on
ave polynomials. In the 
ase where p = 3, the permutation 1p2 . . . (p−1) be
omes

132 and the permutation 13 . . . (p − 1)2p be
omes 123. The authors 
omputed expli
it formulas for

NM132(t, x, y) and NM123(t, x, y) using other methods in [12℄.

The outline of this paper is as follows. In Se
tion 2, we re
all the ba
kground in the theory of

symmetri
 fun
tions that we will need for our proofs. Then in Se
tion 3, we prove Theorems 1.1 and

1.2, Finally in Se
tion 4, we state our 
on
lusions and dis
uss some areas for further resear
h.

2 Symmetri
 fun
tions

In this se
tion, we give the ne
essary ba
kground on symmetri
 fun
tions that will be needed for our

proofs.

A partition of a positive integer n is a ve
tor of non-zero integers λ = (λ1, . . . , λs) where 0 < λ1 ≤
· · · ≤ λs and n = λ1 + . . . + λs. Ea
h λi for 1 ≤ i ≤ s is 
alled a part of λ and we let ℓ(λ) denote
the number of parts of λ. We use the notation λ ⊢ n to mean λ is a partition of n. When a partition

of n involves repeated parts, we shall often use exponents in the partition notation to indi
ate these

repeated parts. For example, we will write (12, 23, 32) for the partition (1, 1, 2, 2, 2, 3, 3).
Let Λ denote the ring of symmetri
 fun
tions in in�nitely many variables x1, x2, . . .. The nth

elementary symmetri
 fun
tion en = en(x1, x2, . . .) and nth
homogeneous symmetri
 fun
tion hn =

hn(x1, x2, . . .) are de�ned by the generating fun
tions given in (6). For any partition λ = (λ1, . . . , λℓ),
let eλ = eλ1 · · · eλℓ

and hλ = hλ1 · · · hλℓ
. It is well known that {eλ : λ is a partition} is a basis for

Λ. In parti
ular, e0, e1, . . . is an algebrai
ally independent set of generators for Λ and, hen
e, a ring

homomorphism θ on Λ 
an be de�ned by simply spe
ifying θ(en) for all n.
A key element of our proofs is the 
ombinatorial des
ription of the 
oe�
ients of the expansion of

hn in terms of the elementary symmetri
 fun
tions eλ given by E§e
io§lu and the se
ond author in

[7℄. They de�ned a λ-bri
k tabloid of shape (n) with λ ⊢ n to be a re
tangle of height 1 and length

n whi
h is 
overed by �bri
ks� of lengths found in the partition λ in su
h a way that no two bri
ks

overlap. For example, Figure 1 shows the six (12, 22)-bri
k tabloids of shape (6).

Figure 1: All six (12, 22)-bri
k tabloids of shape (6).

Let Bλ,n denote the set of λ-bri
k tabloids of shape (n) and let Bλ,n be the number of λ-bri
k
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tabloids of shape (n). If B ∈ Bλ,n, we will write B = (b1, . . . , bℓ(λ)) if the lengths of the bri
ks in

B, reading from left to right, are b1, . . . , bℓ(λ). Through simple re
ursions, E§e
io§lu and the se
ond

author [7℄ proved that

hn =
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,n eλ. (11)

This interpretation of hn in terms of en will aid us in des
ribing the 
oe�
ients of θ(H(t)) = Uτ (t, y)
whi
h will in turn allow us to 
ompute the 
oe�
ients NMτ,n(x, y).

3 The proof of Theorems 1.1 and 1.2.

3.1 The homomorphism method and an involution

First we re
all the key steps in the required appli
ation of the homomorphism method for our problem

as des
ribed in [14℄. Suppose that τ ∈ Sj is a permutation su
h that τ starts with 1 and des(τ) = 1.
Our �rst step is to give a 
ombinatorial interpretation to

Uτ (t, y) =
1

NMτ (t, 1, y)
=

1

1 +
∑

n≥1
tn

n!NMτ,n(1, y)
(12)

where NMτ,n(1, y) =
∑

σ∈NMn(τ)
y1+des(σ)

.

Following [14℄, we de�ne a ring homomorphism θτ on the ring of symmetri
 fun
tions Λ by setting

θτ (e0) = 1 and

θτ (en) =
(−1)n

n!
NMτ,n(1, y) for n ≥ 1. (13)

It follows that

θτ (H(t)) =
∑

n≥0

θτ (hn)t
n =

1

θτ (E(−t))
=

1

1 +
∑

n≥1(−t)nθτ (en)

=
1

1 +
∑

n≥1
tn

n!NMτ,n(1, y)
= Uτ (t, y)

whi
h is what we want to 
ompute.

By (11), we have that

n!θτ (hn) = n!
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,n θτ (eλ)

= n!
∑

λ⊢n

(−1)n−ℓ(λ)
∑

(b1,...,bℓ(λ))∈Bλ,n

ℓ(λ)
∏

i=1

(−1)bi

bi!
NMτ,bi(1, y)

=
∑

λ⊢n

(−1)ℓ(λ)
∑

(b1,...,bℓ(λ))∈Bλ,n

(
n

b1, . . . , bℓ(λ)

) ℓ(λ)
∏

i=1

NMτ,bi(1, y). (14)

Our next goal is to give a 
ombinatorial interpretation to the right-hand side of (14). Fix a partition

λ of n and a λ-bri
k tabloid B = (b1, . . . , bℓ(λ)). Then we 
an interpret

( n
b1,...,bℓ(λ)

)
as the number of ways
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of pi
king an ordered set partition (S1, . . . , Sℓ(λ)) of {1, . . . , n} su
h that |Si| = bi for i = 1, . . . , ℓ(λ).

We will interpret

∏ℓ(λ)
i=1 NMτ,bi(1, y) as the number of ways of pi
king permutations (σ(1), . . . , σ(ℓ(λ)))

su
h that σ(i) ∈ NMbi(τ) and assigning a weight to this ℓ(λ)-tuple to be

∏ℓ(λ)
i=1 y

des(σ(i))+1
.

We 
an then use the triple 〈B, (S1, . . . , Sℓ(λ)), (σ
(1), . . . , σ(ℓ(λ)))〉 to 
onstru
t a �lled-labeled-bri
k

tabloid O〈B,(S1,...,Sℓ(λ)),(σ(1) ,...,σ(ℓ(λ)))〉 as follows. First for ea
h bri
k bi, we pla
e a permutation τ (i) of Si

in the 
ells of the bri
k, reading from left to right, so that red(τ (i)) = σ(i)
. Then we label ea
h 
ell of bi

that starts a des
ent of τ (i) with a y and we also label the last 
ell of bi with y. This a

ounts for the fa
-
tor ydes(σ

(i))+1
. Finally, we use the fa
tor (−1)ℓ(λ) to 
hange the label of the last 
ell of ea
h bri
k from

y to −y. For example, suppose n = 19, τ = 15234, B = (9, 3, 5, 2), S1 = {2, 5, 6, 9, 11, 15, 16, 17, 19},
S2 = {7, 8, 14}, S3 = {1, 3, 10, 13, 18}, S4 = {4, 12}, σ(1) = 1 6 2 9 7 8 3 4 5 ∈ NMτ,9, σ

(2) = 1 3 2 ∈
NMτ,3, σ

(3) = 5 1 2 4 3 ∈ NMτ,5, and σ(4) = 2 1 ∈ NMτ,2. Then we have pi
tured the �lled-labeled

bri
k tabloid O〈B,(S1,...,S4),(σ(1) ,...,σ(4)〉) 
onstru
ted from the triple 〈B, (S1, . . . , S4), (σ
(1), . . . , σ(4))〉 in

Figure 2.

= 2 1σ(4)= 1 3 2(2)σ = 5 1 2 4 3(3)σ

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} {4,12} 

σ(1)

2 15 5 19 16 11

= 1 6 2 9 7 8 3 4 5

17 96 7 814 18 1 3 1013 12 4

y y y −y y y y −y y −y

Figure 2: The 
onstru
tion of a �lled-labeled-bri
k tabloid.

Given O = O〈B,(S1,...,Sℓ(λ)),(σ(1) ,...,σ(ℓ(λ)))〉v, let σ be the permutation whi
h is obtained by reading

the elements in the 
ells of O from left to right. Then it is easy to see that we 
an re
over O and

the labels on the 
ells of O from B and σ. Thus we shall spe
ify the �lled-labeled-bri
k tabloid

O〈B,(S1,...,Sℓ(λ)),(σ
(1) ,...,σ(ℓ(λ)))〉 by (B,σ). We let Oτ,n denote the set of all �lled-labeled-bri
k tabloids


onstru
ted in this way. That is, Oτ,n 
onsists of all pairs O = (B,σ) where

1. B = (b1, . . . , bℓ(λ)) is bri
k tabloid of shape (n),

2. σ ∈ Sn su
h that there is no τ -mat
h of σ whi
h is entirely 
ontained in a single bri
k of B, and

3. if there is a 
ell c su
h that a bri
k bi 
ontains both 
ells c and c + 1 and σc > σc+1, then 
ell c
is labeled with a y and the last 
ell of any bri
k is labeled with −y.

The sign of O, sgn(O), is (−1)ℓ(λ) and the weight of O, W (O), is yℓ(λ)+intdes(σ) where intdes(σ)
denotes the number of i su
h that σi > σi+1 and σi and σi+1 lie in the same bri
k. We shall refer to

su
h i as an internal des
ent of O. For example, if τ = 15234, then su
h a �lled-labeled-bri
k tabloid

O 
onstru
ted from the bri
k tabloid B = (2, 8, 3) is pi
tured in Figure 3 where W (O) = y7 and
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sgn(O) = (−1)3. Note that the labels on O are 
ompletely determined by the underlying bri
k tabloid

B = (b1, . . . , bℓ(λ)) and the underlying permutation σ. Thus the �lled-labeled-bri
k tabloid O pi
tured

in Figure 3 equals ((2, 8, 3), 4 11 7 8 10 5 12 3 9 6 2 1 13).

It follows that

n!θτ (hn) =
∑

O∈Oτ,n

sgn(O)W (O). (15)

5 12 3 9 6 2 1 134

yy y −y y −y−y

711 108

Figure 3: An element of O15234,13.

We shall often want to start with a �lled-labeled-bri
k tabloid O = (B,σ) and remove the �rst k

ells of O and 
onsider the resulting obje
t redk(B,σ) = (B′, α) where B′

is the bri
k tabloid whose

bri
ks end at those 
ells c > k where 
ell c is the end of a bri
k in B and whose permutation α is

red(σk+1 . . . σn). For example, if O is the �lled-labeled-bri
k tabloid pi
tured in Figure 3, then red4(O)
is pi
tured in Figure 4.

3 2 1

yy y −y y −y

4 567 8 9

Figure 4: red4(O) for O in Figure 3.

Next we de�ne a weight-preserving sign-reversing involution Iτ on Oτ,n. Given an element O =
(B,σ) ∈ Oτ,n where B = (b1, . . . , bk) and σ = σ1 . . . σn, s
an the 
ells of O from left to right looking

for the �rst 
ell c su
h that either

(i) c is labeled with a y or

(ii) c is a 
ell at the end of a bri
k bi, σc > σc+1, and there is no τ -mat
h of σ that lies entirely in

the 
ells of bri
ks bi and bi+1.

In 
ase (i), if c is a 
ell in bri
k bj , then we split bj into two bri
ks b′j and b′′j where b′j 
ontains all

the 
ells of bj up to an in
luding 
ell c and b′′j 
onsists of the remaining 
ells of bj and we 
hange the

label on 
ell c from y to −y. In 
ase (ii), we 
ombine the two bri
ks bi and bi+1 into a single bri
k b
and 
hange the label on 
ell c from −y to y. For example, 
onsider the element O ∈ O13245,13 pi
tured

in Figure 3. Note that even though the number in the last 
ell of bri
k 1 is greater than the the

number in the �rst 
ell of bri
k 2, we 
an not 
ombine these two bri
ks be
ause 4 11 7 8 10 would be a

15234-mat
h. Thus the �rst pla
e that we 
an apply the involution is on 
ell 5 whi
h is labeled with a

y so that Iτ (O) is the obje
t pi
tured in Figure 5. Finally, if neither 
ase (i) or 
ase (ii) applies, then

we de�ne Iτ (O) = O.
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5 12 3 9 6 2 1 134

y y −y y −y−y

7

−y

11 108

Figure 5: Iτ (O) for O in Figure 3.

In [14℄, the authors proved that I is an involution if τ starts with 1 and des(τ) = 1. It is 
lear from
our de�nitions that if Iτ (O) 6= O, then sgn(O)W (O) = −sgn(Iτ (O))W (Iτ (O)). Hen
e it follows from
(15) that

n!θτ (hn) =
∑

O∈Oτ,n

sgn(O)W (O) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O). (16)

Hen
e if τ starts with 1 and des(τ) = 1, then

Uτ,n(y) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O). (17)

Thus to 
ompute Uτ,n(y), we must analyze the �xed points of Iτ .
Note that if O is a �xed point of Iτ , then we 
an not apply 
ase (i) of Iτ so that there 
an be no


ells labeled with y whi
h means that the elements in ea
h bri
k of O must be in
reasing. Similarly,

we 
annot apply 
ase (ii) of Iτ so that if bi and bi+1 are two 
onse
utive bri
ks in O, then either there

is an in
rease between bri
ks bi and bi+1, i.e. the last element in bi is less than the �rst element of bi+1,

or there is τ -mat
h 
ontained in the elements of the 
ells of bi and bi+1 whi
h must ne
essarily involve

both the last element in bi and the �rst element of bi+1. In addition, the authors proved in [14℄ that

in the 
ase where τ starts with 1 and des(τ) = 1, every �xed point O of Iτ has the additional property

that the �rst elements in the bri
ks of O form an in
reasing sequen
e, reading from left to right. Thus

we have the following lemma.

Lemma 3.1 Suppose that τ ∈ Sj, τ starts with 1, and des(τ) = 1. Let θτ : Λ → Q(y) be the ring

homomorphism de�ned on Λ where Q(y) is the set of rational fun
tions in the variable y over the

rationals Q, θτ (e0) = 1, and θτ (en) =
(−1)n

n! NMτ,n(1, y) for n ≥ 1. Then

n!θτ (hn) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O) (18)

where Oτ,n is the set of obje
ts and Iτ is the involution de�ned above. Moreover, O = (B,σ) ∈ Oτ,n

where B = (b1, . . . , bk) and σ = σ1 . . . , σn is a �xed point of Iτ if and only if O satis�es the following

three properties:

1. there are no 
ells labeled with y in O, i.e., the elements in ea
h bri
k of O are in
reasing,

2. the �rst elements in ea
h bri
k of O form an in
reasing sequen
e, reading from left to right, and

3. if bi and bi+1 are two 
onse
utive bri
ks in O, then either (a) there is in
rease between bi and
bi+1, i.e., σ∑i

j=1 |bj |
< σ1+

∑i
j=1 |bj |

, or (b) there is a de
rease between bi and bi+1, i.e., σ∑i
j=1 |bj |

>

σ1+
∑i

j=1 |bj |
, but there is τ -mat
h 
ontained in the elements of the 
ells of bi and bi+1 whi
h must

ne
essarily involve σ∑i
j=1 |bj |

and σ1+
∑i

j=1 |bj |
.
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3.2 Proof of Theorem 1.1

Let τ = 1p23 . . . (p− 1) where p ≥ 4. Then by (17), we must show that the 
oe�
ients

Uτ,n(y) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O)

have the following properties:

1. Uτ,1(y) = −y, and

2. for n > 1,

Uτ,n(y) = (1− y)Uτ,n−1(y) +
∑⌊n−2

p−2
⌋+1

k=2 (−y)k−1
(n−(k−1)(p−3)−2

k−1

)
Uτ,n−(((k−1)(p−2)+1)(y).

Property (1) is immediate sin
e there is only one �lled-labeled-bri
k tabloid O of size 1, namely,

O = ((1), 1), and sgn(O) = −1 and W (O) = y.
Next assume that n > 1 and O = (B,σ) ∈ Oτ,n is a �xed point of Iτ where B = (b1, . . . , bk) and

σ = σ1 . . . σn. By Lemma 3.1, we know that 1 is in the �rst 
ell of O so that σ1 = 1.
We 
laim that 2 must be in the se
ond or third 
ell of O. That is, it must be the 
ase that either

σ2 = 2 or σ3 = 2. To prove this, suppose for a 
ontradi
tion that σc = 2 where c > 3. Sin
e there

are no des
ents within any bri
k, 2 must be in the �rst 
ell of its bri
k. Moreover, sin
e the minimal

elements in the bri
ks of O form an in
reasing sequen
e, reading from left to right, 2 must be in the �rst

ell of the se
ond bri
k b2 so that c = |b1|+1. Sin
e c > 3, |b1| ≥ 3 whi
h implies that 1 < σc−2 < σc−1

and σc−2 > σc = 2. However, by part (b) of part 3 of Lemma 3.1, this means that there must be a

τ -mat
h that involves σc−1 and σc. Sin
e τ has only one des
ent, this would mean that σc−2σc−1σc
would have to play the role of 1p2 in the τ -mat
h whi
h is impossible sin
e σc−2 > σc.

We now have two 
ases depending on whether σ2 = 2 or σ3 = 2.

Case 1. σ2 = 2.

In this 
ase there are two possibilities, namely, either (i) 1 and 2 are both in the �rst bri
k b1 of

O or (ii) bri
k b1 is a single 
ell �lled with 1 and 2 is in the �rst 
ell of the se
ond bri
k b2 of O. In

either 
ase, we know that 1 is not part of a 1p23 . . . (p− 1)-mat
h in O sin
e 2 
annot play the role of

p in 1p23 . . . (p− 1)-mat
h in O. It follows that red1(O) satis�es 
onditions (1), (2), and (3) of Lemma

3.1 and, hen
e, red1(O) is a �xed point of Iτ . In 
ase (i), we see that sgn(O) = sgn(red1(O)) and

W (O) = W (red1(O)) and, in 
ase (ii), sgn(O) = −sgn(red1(O)) and W (O) = yW (red1(O)).
Moreover, we 
an 
reate a �xed point O = (B,σ) ∈ On satisfying 
onditions (1), (2) and (3) of

Lemma 3.1 where σ2 = 2 by starting with a �xed point (B′, σ′) ∈ Oτ,n−1 of Iτ , where B
′ = (b′1, . . . , b

′
r)

and σ′ = σ′
1 . . . σ

′
n−1, and then letting σ = 1(σ′

1 + 1) . . . (σ′
n−1 + 1), and setting B = (1, b′1, . . . , b

′
r) or

setting B = (1 + b′1, . . . , b
′
r).

It follows that �xed points in Case 1 will 
ontribute (1− y)Uτ,n−1(y) to Uτ,n(y).

Case 2. σ3 = 2.

Sin
e there are no des
ents within bri
ks in O and the minimal elements of the bri
ks are in
reas-

ing, reading from left to right, it must be the 
ase that 2 is in the �rst 
ell of bri
k b2. Thus it must
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be the 
ase that b1 has two 
ells and σ2 > σ3. By part (b) of 
ondition 3 of Lemma 3.1, there must be

exist a τ -mat
h among the elements of bri
ks b1 and b2 that involves σ2 and σ3. The only way this is

possible is if the τ -mat
h starts in 
ell 1 so that red(σ1 . . . σp) = 1p23 . . . (p − 1). Hen
e b2 must have

at least p− 2 
ells.

Next we 
laim that σp−1 = p−2. That is, we know that σp−1 must be greater than σ1, σ3, . . . , σp−2

so that σp−1 ≥ p−2. Next suppose for a 
ontradi
tion that σp−1 > p−2. Then let i be the least number
in the set {1, . . . , p− 2} that is not 
ontained in bri
ks b1 and b2. Sin
e the numbers in ea
h bri
k are

in
reasing and the minimal elements of the bri
ks are in
reasing, the only possible position for i is the
�rst 
ell of bri
k b3. But then it follows that there is a des
ent between the last 
ell of bri
k b2 and the

�rst 
ell of b3. Sin
e O is a �xed point of Iτ , this must mean that there is a τ -mat
h that in
ludes the

last 
ell of b2 and the �rst 
ell of b3. But sin
e τ has only one des
ent, this τ -mat
h 
an only start at

the 
ell c = b1 + b2 − 1 whi
h is the penultimate 
ell of b2. Thus c 
ould be p− 1 if b2 has p − 2 
ells

or c > p− 1 if b2 has more than p− 2 
ells. In either 
ase, p− 1 ≤ σp−1 ≤ σc < σc+1 > σc+2 = i. But
this is impossible sin
e to have a τ -mat
h starting at 
ell c, we must have σc < σc+2. Thus it must be

the 
ase that σp−1 = p− 2 and {σ1, . . . , σp−1} − {σ2} = {1, . . . , p − 2}.
We now have two sub
ases depending on whether or not there is a τ -mat
h in O starting at 
ell p−1.

Sub
ase 2.1. There is no τ -mat
h in O starting at 
ell p− 1.

First, we 
laim that in this 
ase σp = p − 1. That is, if σp 6= p − 1, then σp > p − 1. This

means that p − 1 
annot be in bri
k b2. Similarly, p − 1 
annot be σ2 sin
e the fa
t that there is a

1p2 . . . (p − 1)-mat
h starting at 
ell 1 means that σ2 > σp > p − 1. Thus p − 1 must be in the �rst


ell of the bri
k b3. This would imply that there is a des
ent between the last 
ell of b2 and the �rst


ell of b3 sin
e p − 1 < σp and σp is in b2. Sin
e there is no τ -mat
h in O starting at 
ell p − 1, the
only possible τ -mat
h 
ontained the 
ells of b2 and b3 would have to start at 
ell c where c 6= p− 1. It

annot be that c < p − 1 sin
e then it would be the 
ase that σc < σc+1 < σc+2. Also, it 
annot be

that c > p− 1 sin
e then σc > p− 1 and σc must be the least integer in the τ -mat
h. Thus it must be

the 
ase that σp = p− 1.
Then we have that O′ = redp−1(O) satis�es 
onditions (1), (2), and (3) of Lemma 3.1. Hen
e it

follows that O′ = redp−1(O) is a �xed point of Iτ in Oτ,n−(p−1) su
h that sgn(O) = −sgn(redp−1(O))
and W (O) = yW (redp−1(O)). Note that if b2 has p − 2 
ells, then O′

will start with a bri
k of size

one and if b2 has more than p − 2 
ells, then O′
will start with a bri
k of size at least two. On

the other hand, if we start with �xed point O′ = (B′, σ′) ∈ Oτ,n−(p−1) of Iτ , then we 
an 
onstru
t

a �lled-bri
k tabloid O = (B,σ) ∈ Oτ,n satisfying 
onditions (1), (2), and (3) of Lemma 3.1 whi
h

has a τ -mat
h starting at 
ell 1, but has no τ -mat
h starting at 
ell p − 1 in O, by �rst pi
king

σ2 ∈ {p, . . . , n}, then letting σ1 = 1, σ3 = 2, σ4 = 3, . . . , σp−1 = p − 1 and letting σp · · · σn be per-

mutation of {1, . . . , n} − {σ1, . . . , σp−1} su
h that red(σp · · · σn) = σ′
. If B′ = (b′1, b

′
2, . . . , b

′
s), we let

B = (2, p − 3 + b′1, b
′
2, . . . , b

′
s). Hen
e (B,σ) is a �xed point of Iτ . It follows that the �xed points in

Sub
ase 2.1 will 
ontribute (−y)(n − (p− 1))Uτ,n−(p−1)(y) to Uτ,n(y).

Sub
ase 2.2. There is a τ -mat
h starting at 
ell (p− 1) in O.

In this sub
ase, it must be that σp−1 < σp > σp+1 so that b2 must have p − 2 
ells and bri
k b3
starts at 
ell p+ 1. We 
laim that b3 must have at least p− 2 
ells. That is, there must be a τ -mat
h
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that in
ludes the last 
ell of b2 and the �rst 
ell of b3 and sin
e the pattern τ is of length p, b3 must

have at least p− 2 
ells. Moreover, there is a τ -mat
h that starts at 
ell 1 and another one that starts

at 
ell p − 1. These two τ -mat
hes overlap on σp−1 and σp. In general, assume that there is 
hain of

τ -mat
hes in O = (B,σ) starting at 
ell 1 where ea
h 
onse
utive pair of τ -mat
hes overlap on two


ells. Suppose there are exa
tly k−1 su
h τ -mat
hes in this 
hain. Then the jth τ -mat
h starts at the

penultimate 
ell of bri
k bj . Bri
k b1 must have two 
ells and bri
k bj must have p − 2 
ells for ea
h

2 ≤ j ≤ k−1 and bri
k bk must have at least p−2 
ells. Let rj be an integer su
h that the jth τ -mat
h

starts at 
ell rj . Thus rj = 1 + (j − 1)(p − 2) for 1 ≤ j ≤ k − 1. De�ne rk = 1 + (k − 1)(p − 2) and
assume that O does not have a τ -mat
h starting at position rk. Thus we have the situation pi
tured

below in Figure 3.2.

σ1 σ2
︸ ︷︷ ︸

b1

r2

σ3 ··· σr2 σr2+1
︸ ︷︷ ︸

b2

...
rk−1

··· σrk−1
σrk−1+1

︸ ︷︷ ︸
bk−1

rk

··· σrk σrk+1 ···
︸ ︷︷ ︸

bk

Figure 6: An example of a bri
k tabloid with a 
hain of k − 1 τ -mat
hes ea
h starting at rj .

First we 
laim σrj = rj − (j − 1) and

{1, . . . , rj − (j − 1)} = {σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1}

for j = 1, . . . , k. We have shown that σ1 = 1 and that σr2 = σp−1 = p− 2 and

{σ1, . . . , σp−1} − {σ2} = {1, . . . , p − 2}. Thus assume by indu
tion, σrj−1 = rj−1 − (j − 2) and
{1, . . . , rj−1 − (j − 2)} = {σ1, . . . , σrj−1} − {σri+1 : i = 1, . . . , j − 2}. Sin
e there is a τ -mat
h that

starts at 
ell rj−1 and p ≥ 4, we know that all the integers in

{σrj−1 , σrj−1+1, σrj−1+2, . . . , σrj−1+p−3} − {σrj−1+1}

are less than σrj = σrj−1+p−2. Sin
e

{1, . . . , rj−1 − (j − 2)} = {σ1, . . . , σrj−1} − {σri+1 : i = 1, . . . , j − 2},

it follows that σrj ≥ rj−1 − (j − 2) + (p− 3) = rj − (j − 1).
Next suppose that σrj > rj − (j − 1). Then let i be the least integer whi
h is in

{1, . . . , rj − (j − 1)} − ({σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1}).

Our assumptions ensure that σr1+1 > σr2+1 > . . . > σrj+1 so that i does not lie in the bri
ks b1, . . . , bj .
Be
ause the integers in ea
h bri
k in
rease and the minimal integers in the bri
ks are in
reasing, it

must be the 
ase that i is in the �rst 
ell of the next bri
k bj+1. Now it 
annot be that j < k be
ause

then we have that i = σrj+2 ≤ rj − (j − 1) < σrj < σrj+1 whi
h would violate the fa
t that there is a

τ -mat
h in O starting at 
ell rj . If j = k, then it follows that there is a des
ent between the last 
ell

of bk and the �rst 
ell of bk+1 sin
e i is in the �rst 
ell of bk+1 and i ≤ rk − (k − 1) < σrk . Sin
e O
is a �xed point of Iτ , this must mean that there is a τ -mat
h that in
ludes the last 
ell of bk and the

�rst 
ell of bk+1. But sin
e τ has only one des
ent, this τ -mat
h 
an only start at the 
ell c whi
h is
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the penultimate 
ell of bk. Thus c must be greater than rk be
ause we are assuming that there is no

τ -mat
h starting at 
ell rk. Hen
e bk+1 must have more than p − 2 
ells. In this 
ase, we have that

i ≤ rk − (k − 1) < σrk ≤ σc < σc+1 > σc+2 = i. But this 
annot be sin
e to have a τ -mat
h starting

at 
ell c, we must have σc < σc+2. Therefore it is not true that σrj > rj − (j − 1) so that it must be

the 
ase that σrj = rj − (j − 1). Finally sin
e

1. {1, . . . , rj−1 − (j − 2)} = {σ1, . . . , σrj−1} − {σri+1 : i = 1, . . . , j − 2} and

2. σrj−1 , σrj−1+2, . . . , σrj−1+p−3 < σrj ,

it must be the 
ase that

{1, . . . , rj − (j − 1)} = {σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1}

as desired. Thus we have proved by indu
tion that σrj = rj − (j − 1) and {1, . . . , rj − (j − 1)} =
{σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1} for j = 1, . . . , k.

This means that the positions of the elements in the set {σ1, . . . , σrk} − {σri+1 : i = 1, . . . , k − 1}
are 
ompletely determined. Next we 
laim that sin
e there is no τ -mat
h starting at position rk, it
must be the 
ase that σrk+1 = rk − (k− 1) + 1 = rk − k+2. That is, sin
e there is a τ -mat
h starting

at 
ell rj for j = 1, . . . , k − 1, it must be the 
ase that σr1+1 > σr2+1 > · · · > σrk−1+1 > σrk+1. If

σrk+1 6= rk − k + 2, then σrk+1 > rk − k + 2 and, hen
e, rk − k + 2 
annot be in any of the bri
ks

b1, . . . , bk. Thus rk − k + 2 must be in the �rst 
ell of the bri
k bk+1. But then there will be a des
ent

between the last 
ell of bk and the �rst 
ell of bk+1 sin
e rk − k + 2 < σrk+1 and σrk+1 is in bk. Sin
e
there is no τ -mat
h starting at 
ell rk, the only possible τ -mat
h among the 
ells of bk and bk+1 would

have to start at a 
ell c with c 6= rk. But it 
annot be that c < rk sin
e then σc < σc+1 < σc+2.

Similarly, it 
annot be that c > rk sin
e then σc > rk − k + 2 and rk − k + 2 would have to be part

of the τ -mat
h whi
h means that σc 
ould not play the role of 1 in the τ -mat
h. Thus it must be the


ase that σrk+1 = rk − k + 2.

It follows that O′ = redrk(O) satis�es 
onditions (1), (2), and (3) of Lemma 3.1 and hen
e is a

�xed point of Iτ in Oτ,n−rk . Note that if bk has p − 2 
ells, then the �rst bri
k of O′
will be of size

1 and if bk has more than p − 2 
ells, then the �rst bri
k of O′
will have size at least two. Sin
e

there is a τ -mat
h starting at ea
h of the 
ells rj for j = 1, . . . , k − 1, it must be the 
ase that

σr1+1 > σr2+1 > · · · > σrk−1+1 > σrk+1 = rk − k + 2. On the other hand, if we start with any �xed

point O′ = (B′, σ′) ∈ Oτ,n−rk of Iτ where B′ = (b′1, . . . , b
′
s), then we 
an 
reate �lled-labeled-bri
k

tabloid O = (B,σ) ∈ Oτ,n satisfying 
onditions (1), (2), and (3) of Lemma 3.1 whi
h has τ -mat
hes

starting at positions 1, r1, . . . , rk−1 but no τ -mat
h starting at position rk by letting the �rst k − 1
bri
ks of B be a bri
k of size 2 followed by k − 2 bri
ks of size p − 2 and then having the k-th bri
k

of B be a size p− 2 + b′1 and the remaining bri
ks be b′2, . . . , b
′
s. The permutation σ is 
onstru
ted by

ensuring that

(i) the elements 1, . . . , rk − k − 2 o

upy the set of 
ells {1, . . . , rk + 1} − {ri + 1 : i = 1, . . . , k − 1},
reading from left to right,

(ii) there are k−1 integers a1 > · · · > ak−1 from {rk+k−1, . . . , n} whi
h o

upy 
ells r1+1, . . . , rk−1+
1, reading from left to right, and
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(iii) σrk−k+1 . . . σn is a permutation of {1, . . . , n}− ({1, . . . , rk − k+2} ∪ {a1, . . . , ak−1}) that redu
es
to σ′

.

Ea
h su
h (B,σ) will be a �xed point of Iτ su
h that σ has a 
hain of τ -mat
hes that start at σ1 and

overlap in exa
tly two elements. Note that we have

(n−(rk−k−2)
k−1

)
=

(n−(k−1)(p−3)−2
k−1

)
ways 
hoose the

numbers a1, . . . , ak−1. Moreover, W (O) = yk−1W (O′) and sgn(O) = (−1)k−1sgn(O′). It follows that
the �xed points in Sub
ase 2.2 will 
ontribute

⌊n−2
p−2

⌋+1
∑

k≥3

(−y)k−1

(
n− (k − 1)(p − 3)− 2

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y)

to Uτ,n(y).

Hen
e we have proved that if τ = 1p23 . . . (p− 1) where p ≥ 4, then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
,

Uτ,1(y) = −y, and, for n > 1,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋+1
∑

k=2

(−y)k−1

(
n− (k − 1)(p − 3)− 2

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y).

Thus Theorem 1.1 holds as desired.

For any polynomial f(x), we let f(x)|xk denote the 
oe�
ient of xk in f(x). We have used Theorem

1.1 to 
ompute tables of the 
oe�
ients U1p23...p,n(y)|yi for n ≤ 8 and p = 4, 5, 6. Having determined

these polynomials U1p23...p,n(y), we have used Mathemati
a to 
ompute tables of the polynomials

NM1p23...p−1,n(x, y) for n ≤ 8 and p = 4, 5, 6. See Tables 2-7 in Appendix I.

We note that there are many terms in these expansions whi
h are easily explained. For example, the

identity permutation ǫ = 12 . . . n 
orresponds to the term xy in NM1p23...(p−1),n(x, y) and the reverse

of the identity permutations ǫ = n(n− 1) . . . 21 
orresponds to the term xnyn in NM1p23...(p−1),n(x, y).
More generally, we 
laim that NM1p2...(p−1),n(x, y)|xkyk is always the Stirling number of the se
ond kind

S(n, k) whi
h is the number of set partitions of {1, . . . , n} into k parts. That is, a permutation σ ∈ Sn

that 
ontributes to the 
oe�
ient xkyk in NM1p2...(p−1),n(x, y) must have k left-to-right minima and

k− 1 des
ents. Sin
e ea
h left-to-right minima of σ whi
h is not the �rst element is always the se
ond

element of a des
ent pair, it follows that if 1 = i1 < i2 < i3 < · · · < ik are the positions of the left

to right minima, then σ must be in
reasing in ea
h of the intervals [1, i2), [i2, i3), . . . , [ik−1, ik), [ik, n].
But this means that

{σ1, . . . , σi2−1}, {σi2 , . . . , σi3−1}, . . . , {σik−1
, . . . , σik−1}, {σik , . . . , σn}

is just a set partition of {1, . . . , n} ordered by de
reasing minimal elements. Moreover, no su
h per-

mutation 
an have a 1p2 . . . (p− 1)-mat
h for any p ≥ 4. Vi
e versa, if A1, . . . , Ak is a set partition of

{1, . . . , n} su
h that min(A1) > · · · > min(Ak), then the permutation σ = Ak ↑ Ak−1 ↑ . . . A1 ↑ is a

permutation with k left-to-right minima and k − 1 des
ents where for any set A ⊆ {1, . . . , n}, A ↑ is

the list of the elements of A in in
reasing order. It follows that for any p ≥ 4,



164 M. E. JONES AND J. B. REMMEL

1. NM1p2...(p−1),n(x, y)|xy = S(n, 1) = 1,

2. NM1p2...(p−1)(x, y)|x2y2 = S(n, 2) = 2n−1 − 1,

3. NM1p2...(p−1)(x, y)|xnyn = S(n, n) = 1, and

4. NM1p2...(p−1)(x, y)|xn−1yn−1 = S(n, n− 1) =
(
n
2

)
.

It is also not di�
ult to determine NM1p23...(p−1),n(x, y)|xy2 whi
h 
orresponds to those permuta-

tions σ ∈ NM1p23...(p−1),n whi
h have one des
ent and LRmin(σ) = 1 so that the �rst element of σ
must be 1. First we 
an 
reate a permutation with one des
ent by pi
king any subset A ⊆ {1, . . . , n}
and letting σA,n be the permutation whi
h 
onsists of the elements of A in in
reasing order followed

by the elements of {1, . . . , n} − A in in
reasing order. For example if n = 6 and A = {2, 4}, then
σA,6 = 241356. Clearly if A equals ∅ or A = {1, . . . , i} for some i ≤ n, then σA,n is just the identity

permutation whi
h has no des
ents. Thus the number of permutations of Sn with exa
tly one des
ent

is 2n − n− 1. We have already shown that the number of permutations σ ∈ Sn su
h that des(σ) = 1
and σ does not start with 1 is 2n−1 − 1. It follows that there are 2n − (n+1)− (2n−1 − 1) = 2n−1 − n
permutations σ ∈ Sn that have one des
ent and start with 1. Next we have to determine the number

of permutations of Sn that have one des
ent and start with 1 whi
h have a 1p23 . . . (p − 1)-mat
h.

Clearly if n < p, then there are no σ ∈ Sn su
h that des(σ) = 1 and σ has a 1p23 . . . (p − 1)-mat
h.

If 1 ∈ A and σA,n does have 1p23 . . . (p − 1)-mat
h, then the largest 2 elements of A must play the

role of 1 and p in the 1p23 . . . (p − 1)-mat
h in σA and �rst (p − 2) elements of {1, . . . , n} − A must

play the role of 2 . . . (p − 1) in the 1p23 . . . (p − 1)-mat
h in σA. It follows that all but the largest

element of A must be smaller than all the elements {1, . . . , n} − A and the �rst (p − 2) elements

of {1, . . . , n} − A must be smaller than the largest element of A. Hen
e σA,n must be of the form

1 . . . s (s+1) x (s+2) (s+3) . . . (s+ p− 1) . . . where x > (s+ p− 1) for some 0 ≤ s ≤ n− p. Thus for
any given s, we have n − (s+ p − 1) 
hoi
es for x. Hen
e if n ≥ p, the number of σ ∈ Sn whi
h have

one des
ent, start with 1, and have one 1p23 . . . (p− 1)-mat
h is

n−p
∑

s=0

(n− (s+ p− 1)) =

(
n− p+ 2

2

)

.

It then follows that for all p ≥ 4,

NM1p23...p−1,n(x, y)|xy2 =

{

2n−1 − n for n < p

2n−1 − n−
(n−p+2

2

)
for n ≥ p.

3.3 Proof of Theorem 1.2

Let τ = 13 . . . (p − 1)2p where p ≥ 4. Then we want to show that Uτ,1(y) = −y and for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋
∑

k=1

(−y)k
1

(p− 2)k + 1

(
k(p− 1)

k

)

Uτ,n−(k(p−2)+1)(y). (19)

Again we must study the �xed points of Iτ for τ = 13 . . . (p− 1)2p where p ≥ 4.
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Let O = (B,σ) be a �xed point of Iτ where B = (b1, . . . , bk) and σ = σ1 . . . σn. By Lemma 3.1,

we know that σ1 = 1. We 
laim that σ2 = 2 or σp−1 = 2. To show this, suppose that σc = 2 where

c /∈ {2, p − 1}. Sin
e there are no des
ents within any bri
k, 2 must be in the �rst 
ell of a bri
k.

Moreover, sin
e the minimal elements in the bri
ks of O form an in
reasing sequen
e, reading from left

to right, 2 must be in the �rst 
ell of b2. Thus 1 is in the �rst 
ell of b1 and 2 is in the �rst 
ell of b2.
Then there is a des
ent between the last 
ell of b1 and the �rst 
ell of b2. By Lemma 3.1, this means

that there is a τ -mat
h in σ 
ontained in the 
ells in bri
ks b1 and b2 that involves the element in the

last 
ell of b1, namely σc−1, and the element in the �rst 
ell of b2, namely σc = 2. Clearly, σc must
play the role of 2 in the τ -mat
h whi
h means that the τ -mat
h starts at 
ell 1 sin
e only 1 
an play

the role of the 1 in the τ -mat
h. But then it follows that c must be equal to (p− 1) whi
h 
ontradi
ts

our 
hoi
e of c. Hen
e it must be the 
ase that σc = 2 where c ∈ {2, p − 1}. Thus we have two 
ases

to 
onsider.

Case I. σ2 = 2.

In this 
ase, we 
an use the same argument that we used in Case 1 above to show that the �xed

points in Case I will 
ontribute (1− y)Uτ,n−1(y) to Uτ,n(y).

Case II. σp−1 = 2.

Then σp−1 must be the �rst 
ell of b2 so that b1 has p − 2 
ells and σp−2 > σp−1 = 2. By 
ondi-

tion 3 of Lemma 3.1, there must be a τ -mat
h that involves σp−2 and σp−1 
ontained in the 
ells of b1
and b2 whi
h means that b2 must 
ontain at least 2 
ells. We now have two sub
ases based on whether

or not there is a τ -mat
h in O starting at 
ell (p− 1).

Sub
ase II.1. There is no τ -mat
h in O starting at 
ell (p − 1).

We 
laim that σp = p. First observe that σp must be greater than or equal to σ1, . . . , σp−1 sin
e

there is a τ -mat
h starting at 
ell 1. Thus σp ≥ p. If σp > p, then p 
annot be in bri
k b2. Sin
e

bri
k b1 has p − 2 
ells and 1 is in b1, we 
annot have all of the integers 3, . . . , p in b1 so let i be the
least integer in {3, . . . , p} whi
h is not in b1. Sin
e σp > p, we know i 
annot be in bri
k b2. Sin
e

the minimal elements in the bri
ks are in
reasing, it must be the 
ase that i is in the �rst 
ell of bri
k

b3 and there is a des
ent between the last 
ell of b2 and the �rst 
ell of b3. This implies that there is

a τ -mat
h that in
ludes the last 
ell of b2 and the �rst 
ell of b3. Sin
e we are assuming there is no

τ -mat
h starting at 
ell p − 1, this τ -mat
h must start at some 
ell c where c > p − 1. But this is

impossible sin
e i whi
h is in the �rst 
ell of b3 must play the role of 2 in that τ -mat
h and σc must
play the role of 1 in that τ -mat
h and we know that i ≤ p < σp ≤ σc. Hen
e it must be the 
ase that
σp = p whi
h for
es that σ1 . . . σp = 13 . . . (p − 1)2p.

Then it is not hard to 
he
k that redp−1(O) satis�es 
onditions (1), (2), and (3) of Lemma 3.1 and

hen
e it is a �xed point of Iτ in Oτ,n−(p−1) su
h that W (O) = yW (O′) and sgn(O) = −sgn(O′). Vi
e
versa, if we are given a �xed point of O′ = (B′, σ′) ∈ Oτ,n−(p−1) of Iτ satisfying 
onditions (1), (2), and
(3) of Lemma 3.1 where B′ = (b′1, . . . , b

′
s) and σ′ = σ′

1 . . . σ
′
n−(p−1), then we 
an 
onstru
t a �xed point

O = (B,σ) ∈ Oτ,n of Iτ su
h that O has a τ -mat
h starting at 
ell 1 but does not have a τ -mat
h start-
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ing at 
ell (p−1), be letting B = (p−2, 2+ b′1, . . . , b
′
s) and σ = 13 . . . (p−1)2p(σ′

2+p) . . . (σ′
n−p−1+p).

It follows that �xed points in Sub
ase II.1 will 
ontribute (−y)Uτ,n−(p−1)(y) to Uτ,n(y).

Sub
ase II.2. There is a τ -mat
h starting at 
ell (p− 1).

In this 
ase, it must be that σp−1 < σ2p−3 < σp < · · · < σ2p−4. We 
laim that b2 must be of

size p − 2. Clearly, b2 has at most p − 2 
ells sin
e the elements in ea
h bri
k are in
reasing and

σ2p−4 > σ2p−3. Now if b2 has less than p− 2 
ells, then 
ell (2p− 3) must be the �rst 
ell of some bri
k

bk and bri
k bk−1 would have less than p − 2 
ells. Then all the elements in bk−1 are stri
tly larger

than the �rst element of bk so that it would not be possible to have a τ -mat
h 
ontained in the bri
ks

bk−1 and bk whi
h would 
ontradi
t the fa
t that O is a �xed point of Iτ by Lemma 3.1. Thus bri
k

b2 has p− 2 
ells whi
h, in turn, implies that bri
k b3 must have at least 2 
ells. That is, if b3 has less
than 2 
ells, there 
ould be no τ -mat
h among the 
ells of b2 and b3 even though there is a des
ent

between the last 
ell of b2 and the �rst 
ell of b3 violating the fa
t that O is a �xed point of Iτ .
Noti
e here that there is a τ -mat
h that starts at 
ell 1 and another one that starts at 
ell (p− 1).

These two τ -mat
hes overlap on the 
ells (p − 1) and p. In general, assume that there is a 
hain

of τ -mat
hes starting at 
ell 1 that ea
h overlap by two 
ells. Suppose there are exa
tly k − 1 su
h

τ -mat
hes in this 
hain. Then the jth τ -mat
h starts at the �rst 
ell of bri
k bj . Bri
k bj must have
p − 2 
ells for ea
h 1 ≤ j ≤ k − 1 and bri
k bk must have at least 2 
ells. Let rj be an integer su
h

that the jth τ -mat
h starts at 
ell rj . Then it follows that rj = 1 + (j − 1)(p − 2) for 1 ≤ j ≤ k − 1.
De�ne rk = 1 + (k − 1)(p − 2) and assume that O does not have a τ -mat
h starting at 
ell rk.

Next we 
laim that σrk+1 = rk+1 and {σ1, . . . , σrk , σrk+1} = {1, . . . , rk+1}. That is, sin
e there are
τ -mat
hes starting at positions r1, r2, . . . , rk−1, we have that σrj , . . . , σrj+1 < σrj+1+1 for ea
h 1 ≤ j ≤
k−1. It follows that σrk+1 is greater than σi for i = 1, . . . , rk so that σrk+1 ≥ rk+1. For a 
ontradi
tion,
assume that σrk+1 > rk+1. It then follows that there is at least one i ∈ {1, . . . , rk+1} whi
h does not

appear in the �rst rk + 1 
ells of O so let j be the least element in {1, . . . , rk + 1} − {σ1, . . . , σrk+1}.
Then j 
annot lie in bri
k bk be
ause j < σrk+1 and bri
k bk starts at 
ell rk + 1 so that j must be

in the �rst 
ell of bri
k bk+1. Thus there is a des
ent between the last 
ell of bk and the �rst 
ell of

bk+1. But then we 
laim that there 
an be no τ -mat
h that in
ludes the last 
ell of bk the �rst 
ell of

bk+1. That is, we are assuming that there is no τ -mat
h starting at 
ell rk in O. Thus if there is a

τ -mat
h 
ontained in the 
ells of bk and bk+1, it must start after position rk and involve j. But j is

less than all the integers in bri
k bk that appear after 
ell rk whi
h means that none of them 
an play

the role of 1 in su
h a τ -mat
h. This violates the fa
t that O is a �xed point of Iτ . Thus it must be
the 
ase that σrk+1 = rk + 1. Sin
e σrk+1 is greater than σi for i = 1, . . . , rk, it automati
ally follows

that {σ1, . . . , σrk+1} = {1, . . . , rk + 1}.
It is then easy to 
he
k that O′ = redrk(O) satis�es 
onditions (1), (2), and (3) of Lemma 3.1 and

hen
e it is a �xed point of Iτ in Oτ,n−rk . Moreover, sin
e ea
h of the �rst k − 1 bri
ks 
ontributes a

fa
tor of −y to sgn(O)W (O), we have that sgn(O′)W (O′) = (−y)k−1sgn(O)W (O). On the other hand,

if we start with �xed point O′ = (B′, σ′) ∈ Oτ,n−rk of Iτ where B′ = (b′1, . . . , b
′
s) and σ′ = σ′

1 . . . σ
′
n−rk

,

then we 
an 
reate an O = (B,σ) ∈ Oτ,n satisfying 
onditions (1), (2), and (3) of Lemma 3.1 whi
h

ne
essarily will be a �xed point of Iτ where O has τ -mat
hes starting at positions 1, r2, . . . , rk−1 but

not at rk by letting σ = σ1 . . . σrk+1(rk + σ′
2) . . . (rk + σ′

n−rk
) where σ1 . . . σrk+1 is a permutation of

Srk+1 whi
h has τ -mat
hes starting at positions 1, r2, . . . , rk−1 and letting B start out with k−1 bri
ks
of size p− 2 followed by a bri
k of size p− 2+ b′1 followed by b′2, . . . , b

′
s. It follows that the 
ontribution
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of su
h �xed points to Uτ,n(y) is (−y)k−1Dτ,rk+1Uτ,n−(k−1)(p−2)+1)(y) where Dτ,rk+1 is the number of

σ ∈ Srk+1 su
h that there are τ -mat
hes in σ starting at positions 1, r2, . . . , rk−1.

Fortunately, Harmse proved a formula in his thesis [10℄ from whi
h we 
an obtain a formula for

Dτ,rk+1 for any τ = 13 . . . (p− 1)2p where p ≥ 4. In parti
ular, this formula was needed for the study

of 
olumn stri
t �llings of re
tangular shapes initiated by Harmse and the se
ond author [11℄. That is,

Harmse and the se
ond author [11℄ de�ned Fn,k to be the set of all �llings of a k×n re
tangular array

with the integers 1, . . . , kn su
h that that the elements in
rease from bottom to top in ea
h 
olumn.

We let (i, j) denote the 
ell in the ith row from the bottom and the jth 
olumn from the left of the

k × n re
tangle and we let F (i, j) denote the element in 
ell (i, j) of F ∈ Fn,k.

Given a partition λ = (λ1, . . . , λk) where 0 < λ1 ≤ · · · ≤ λk, we let Fλ denote the Ferrers diagram

of λ, i.e. Fλ is the set of left-justi�ed rows of squares where the size of the i-th row is λi. Thus a

k×n re
tangular array 
orresponds to the Ferrers diagram 
orresponding to (nk). If F ∈ Fn,k and the

integers are in
reasing in ea
h row, reading from left to right, then F is a standard tableau of shape

(nk). We let Stnk denote the set of all standard tableaux of shape (nk) and let stnk = |Stnk |. One 
an
use the Frame-Robinson-Thrall hook formula [8℄ to show that

stnk =
(kn)!

∏k−1
i=0 (i+ n) ↓n

(20)

where (n) ↓0= 1 and (n) ↓k= n(n− 1) · · · (n− k + 1) for k > 0.

If F is any �lling of a (k × n)-re
tangle with distin
t positive integers su
h that elements in ea
h


olumn in
rease, reading from bottom to top, then we let red(F ) denote the element of Fn,k whi
h

results from F by repla
ing the ith smallest element of F by i. For example, Figure 7 demonstrates a

�lling, F , with its 
orresponding redu
ed �lling, red(F ).

8

6

15

10
red(F)

5

3

9

6
F

11

8

17

13

12 16 22 7 10 12

1 7 5 1 4 2

Figure 7: An example of F ∈ F3,4 and red(F ).

If F ∈ Fn,k and 1 ≤ c1 < · · · < cj ≤ n, then we let F [c1, . . . , cj ] be the �lling of the (k×j)-re
tangle
where the elements in 
olumn a of F [c1, . . . , cj ] equal the elements in 
olumn ca in F for a = 1, . . . , j.
Let P be an element of Fj,k and F ∈ Fn,k where j ≤ n. Then we say there is a P -mat
h in F starting

at position i if red(F [i, i + 1, . . . , i + j − 1]) = P . We let P -mch(F ) denote the number of P -mat
hes

in F .

If P ∈ F2,s, then we de�ne MPP,n to be the set of F ∈ Fn,s su
h that P -mch(F ) = n − 1, i.e.
the set of F ∈ Fn,s su
h that there is a P -mat
h in F starting at positions 1, 2, . . . , n − 1. Elements

of MPP,n are 
alled maximum pa
kings for P . We let mpP,n = |MPP,n| and use the 
onvention that

mpP,1 = 1. For example, if P is the element of F2,k that has the integers 1, . . . , s in the �rst 
olumn

and the integers s+1, . . . , 2s in the se
ond 
olumn, then it follows that mpP,n = 1 for all n ≥ 1, sin
e
the only element of F ∈ Fn,k with P -mch(F ) = n− 1 has the integers (i− 1)s + 1, . . . , (i− 1)s+ s in
the i-th 
olumn, for i = 1, . . . , n. Harmse and the se
ond author [11℄ proved that the 
omputation of

the generating fun
tion for the number of P -mat
hes in Fn,k 
an be redu
ed to 
omputing mpP,n for
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all n so that they 
omputed mpP,n for various P ∈ F2,k. In parti
ular, let Ps ∈ St2s be the standard

tableau whi
h has 1, 3, 4, . . . , s+ 1 in the �rst 
olumn and 2, s+ 2, s+ 3, . . . , 2s in the se
ond 
olumn.

For example, P5 is pi
tured in Figure 8.

1 2

3

4

5

6

7

8

9

10

Figure 8: The standard tableau P5.

Then Harmse proved that for s, n ≥ 2,

mpPs,n =
1

(s− 1)(n − 1) + 1

(
s(n− 1)

n− 1

)

(21)

We 
laim that we 
an use (21) to obtain our desired formula for Dτ,rk+1. That is, suppose that

s, n ≥ 2 and F ∈ MPPs,n. Then in F , the top s − 1 elements of 
olumn i where i > 1 are larger

than any of the elements in 
olumn i− 1 and are greater than or equal to F (1, i). It follows that the
top s − 1 elements in 
olumn n are greater than all the remaining elements in F so that they must

be s(n − 1) + 2, s(n − 1) + 3, . . . , sn reading from bottom to top. Given su
h an F , we let σF be the

permutation in Ss(n−1)+2 where

σF = F (1, 1)F (2, 1) . . . F (s, 1) . . . F (1, n − 1)F (2, n − 1) . . . F (s, n− 1)F (1, n)F (2, n).

For example, if F is the element of MPP5,4 pi
tured at the top of Figure 9, then σF is pi
tured at the

bottom of Figure 9.

σ    = 
F

1 4 5 6 8 2 9 10 11 12 3 13 14 15 16 7 17

F=

20

19

18

17

1 2 3

4

5

6

7

8

9

11

10

12

13

14

15

16

Figure 9: An example of σF .

Then it follows that if F ∈ MPPs,n, then σF is a permutation in Ss(n−1)+2 whi
h has 1 3 . . . (s −
1) 2 s-mat
hes starting at positions 1+ (s− 2)(j − 1) for j = 1, . . . , n− 1. Vi
e versa, if σ ∈ Ss(n−1)+2

is a permutation whi
h has 1 3 . . . (s − 1) 2 s-mat
hes starting at positions 1 + (s − 2)(j − 1) for

j = 1, . . . , n − 1, then we 
an 
reate a �lling of Fσ ∈ MPPs,n by letting rth 
olumn of F 
onsist of

σs(r−1)+1, . . . , σs(r−1)+s, reading from bottom to top, for r = 1, . . . , n − 1 and letting the nth

olumn


onsist of σs(n−1)+1, σs(n−1)+2, s(n − 1) + 3, . . . , sn, reading from bottom to top. It then follows from
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(21) that the number of permutations σ ∈ S(k−1)(p−1)+2 that have 1 3 . . . (p−1) 2 p-mat
hes starting at

positions 1+(p−2)(j−1) for j = 1, . . . , k−1 is 1
(p−2)(k−1)+1

((k−1)(p−1)
k−1

)
. Hen
e if τ = 1 3 . . . (p−1) 2 p,

then

Dτ,rk+1 =
1

(p − 2)(k − 1) + 1

(
(k − 1)(p − 1)

k − 1

)

.

Thus the 
ontribution to Uτ,n(y) of those �xed points O su
h that the bri
ks b1, . . . , bk−1 all have p−2

ells and there is a τ -mat
h starting at 
ell rj for 1 ≤ j ≤ k − 1, but there is no τ -mat
h starting at

position rk = (k − 1)(p − 2) + 1 is

(−y)k−1 1

(p − 2)(k − 1) + 1

(
(k − 1)(p − 1)

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y).

Hen
e we have shown that if τ = 13 . . . (p− 1)2p where p ≥ 4, then Uτ,1(y) = −y and for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋
∑

k=1

(−y)k
1

(p− 2)k + 1

(
k(p− 1)

k

)

Uτ,n−(k(p−2)+1)(y). (22)

This proves Theorem 1.2.

In Tables 8-13 in Appendix 1, we have also 
omputed the values of the polynomials

U13...(p−1)2p,n(y) and NM13...(p−1)2p,n(x, y) for n ≤ 8 and p = 4, 5, 6.

Again, we explain several of these 
oe�
ients. For example, the same argument that we used to

prove that NM1p2...,(p−1),n(x, y)|xkyk = S(n, k) will prove that

NM13...,(p−1)2p,n(x, y)|xkyk = S(n, k).

We 
laim that for p ≥ 4,

NM13...(p−1)2p,n(x, y)|xy2 =

{

2n−1 − n if n < p and

2n−1 − 2n+ p− 1 if n ≥ p.
(23)

That is, suppose that σ ∈ Sn 
ontributes to NM13...(p−1)2p,n(x, y)|xy2 . Then σ must have 1 left-to-right

minima and one des
ent. It follows that σ must start with 1 and have one des
ent. We have shown

that there are 2n−1−n permutations that start with 1 and have 1 des
ent. Next 
onsider when su
h a

σ whi
h starts with 1 and has 1 des
ent 
an have a 13 . . . (p−1)2p-mat
h. If the 13 . . . (p−1)2p-mat
h

starts at position i, then it must be the 
ase that σi+p−3 > σi+p−2. Thus it follows that σ1, . . . , σi+p−3

and σi+p−2, . . . , σn are in
reasing sequen
es. But the fa
t that there is a 13 . . . (p−1)2p-mat
h starting

at position i also implies that σi < σi+p−2. It follows that 1, . . . , σi − 1 must pro
eed σi whi
h implies

that σi = i. But sin
e σi+p−1 is greater than σi+1, . . . , σi+p−3, it follows that σi+p−2 = i+ 1 and

σi+1 = i+ 2, , σi+3 = i+ 3, . . . , σi+p−3 = i+ p− 2.

Thus there is only one su
h σ whi
h has 13 . . . (p − 1)2p-mat
h starting at position i. As i 
an vary

from 1 to n− p+ 1, it follows that there are n− p+ 1 permutations σ whi
h starts with 1 and have 1

des
ent and 
ontain a 13 . . . (p− 1)2p-mat
h. Hen
e (23) holds.
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4 Con
lusions and some problems for further resear
h.

We have proved that the polynomials U1p23...(p−1),n(y) and U134...(p−1)2p,n(y) satisfy simple re
ur-

sions and that these re
ursions allow us to 
ompute the initial terms in the generating fun
tions

NM1p23...(p−1)(t, x, y) and NM134...(p−1)2p(t, x, y) for p ≥ 4.

It is easy to see that the polynomials U1p23...(p−1),n(−y) and U134...(p−1)2p,n(−y) are polynomials

with non-negative integer 
oe�
ients. We have 
omputed extensive tables of these polynomials and all

the polynomials that we have 
omputed are log-
on
ave. Here a polynomial P (y) = a0+a1y+· · ·+any
n

is 
alled log-
on
ave if for all i = 2 . . . n− 1, ai−1ai+1 < a2i and it is 
alled unimodal if there exists an

index k su
h that ai ≤ ai+1 for i = 1 . . . k − 1 and ai ≥ ai+1 for i = k . . . n − 1. Thus for any p ≥ 4,
we 
onje
ture that the polynomials U1p23...(p−1),n(−y) and U134...(p−1)2p,n(−y) are log-
on
ave.

We have 
omputed Un,τ (−y) for many permutations that start with 1. Out of all the patterns τ
that start with 1 and have exa
tly one des
ent that we have looked at, all of the polynomials Uτ,n(−y)
seem to be unimodal but not ne
essarily log-
on
ave. For instan
e, the authors in [12℄ showed if

τ = 1342 then

U1342,n(y) = (1− y)U1342,n−1(y)− y

(
n− 2

2

)

U1342,n−3(y)

and the 
oe�
ients of yi in U1342,n(−y) are given in Table 1.

Table 1: Coe�
ients of U1342,n(−y)

Coe�
ients of yi in U1342,n(−y)

i=1 2 3 4 5 6 7 8 9 10

n=1 1

2 1 1

3 1 2 1

4 1 4 3 1

5 1 8 10 4 1

6 1 15 30 20 5 1

7 1 26 85 80 35 6 1

8 1 42 231 315 175 56 7 1

9 1 64 588 1176 910 336 84 8 1

10 1 93 1380 4144 4326 2226 588 120 9 1

Noti
e that in row 8 and 
olumns 6, 7, 8, (56)(1) > 72. Hen
e, there are polynomials U1342,n(−y)
that are not log-
on
ave. Thus it would be interesting to see whether our re
ursions 
an be used to

prove that the polynomials U1p23...(p−1),n(−y) and U134...(p−1)2p,n(−y) are log-
on
ave.

If we set y = 1, then our results show that the U1p2...(p−1),n(1) and the U13...(p−1)2p,n(1) satisfy simple

re
ursions. Nevertheless, it seems that the sequen
es (U1p2...(p−1),n(1))n≥1 and (U13...(p−1)2p,n(1))n≥1

are quite 
ompli
ated. In fa
t, these sequen
es are not even monotone when we take absolute values.

For example, the initial 27 terms of the sequen
e (U15234,n(1))n≥1 are

−1, 0, 0, 0, 1, 0, 0,−1,−5, 0, 1, 23, 45,−1,−82,−501,−584, 270, 3849, 12110, 9081,−25547,

−161741,−328989,−50941, 1784059, 6821610, . . .
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and the initial 27 terms of the sequen
e (U1324,n(1))n≥1 are

−1, 0, 0, 1, 0,−3,−1, 12, 6,−54,−33, 264, 181,−1365,−1008, 7345, 5712,−40713,−32890,

230886, 192045,−1333309,−1134912, 7813629, 6776639,−46351500,−40827423, . . . .

A more general problem is to extend our method to the 
ase of permutations that start with 1 but

have more that one des
ent. The problem in this 
ase is that the map Iτ is not an involution. That

is, it is possible that when we split a bri
k b into two bri
ks b′ and b′′ at 
ell c labeled y, then it may

be the 
ase that b′ 
an be 
ombined with the bri
k b− just before b be
ause there is a des
ent between
those bri
ks and there is no τ -mat
h in the 
ells of b− and b′ while there was a τ -mat
h in the 
ells of

b− and b so that we 
annot 
ombine b− and b. Thus we 
an not use su
h a 
ell c to de�ne an involution

be
ause we want the 
ases to be reversible. This means that we 
an not use su
h a 
ell c to de�ne

an involution so that we have to restri
t ourselves to those 
ells c whi
h are labeled with y where it

is not possible to 
ombine b− and b′. This makes the de�nition of our involution more 
ompli
ated

and hen
e it is more di�
ult to analyze the �xed points of su
h involutions. Nevertheless, there is at

least one spe
ial 
ase where we 
an still 
arry out the analysis. Namely, the �rst author has shown

U15243,1(y) = −y and for n ≥ 2,

U15243,n(y) = (1− y)U15243,n−1(y) +

⌊n−1
2

⌋
∑

k=2

y(−y)k−1

(
n− k − 1

k

)

U15243,n−2k(y).
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Appendix: The polynomials U1p23...(p−1),n(y), NM1p23...(p−1),n(x, y), U13...(p−1)2p,n(y), and
NM13...(p−1)2p,n(x, y).

Table 2: Coe�
ients of yi in U1423,n(y)

i = 1 2 3 4 5 6 7 8 9 10

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 4 −3 1

5 −1 7 −9 4 −1

6 −1 11 −23 16 −5 1

7 −1 16 −53 54 −25 6 −1

8 −1 22 −110 165 −105 36 −7 1

Table 3: The polynomials NM1423,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 3x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 8x y2 + 15x2 y2 + 9x y3 + 25x2 y3 + 25x3 y3 + x y4+
5x2 y4 + 10x3 y4 + 10x4 y4 + x5 y5

6 x y + 20x y2 + 31x2 y2 + 46x y3 + 113x2 y3 + 90x3 y3 + 23x y4 + 79x2 y4+
105x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 47x y2 + 63x2 y2 + 200x y3 + 448x2 y3 + 301x3 y3 + 219x y4 + 651x2 y4+
728x3 y4 + 350x4 y4 + 53x y5 + 217x2 y5 + 364x3 y5 + 315x4 y5 + 140x5 y5+
x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 105x y2 + 127x2 y2 + 794x y3 + 1650x2 y3 + 966x3 y3 + 1547x y4+
4225x2 y4 + 4214x3 y4 + 1701x4 y4 + 919x y5 + 3166x2 y5 + 4410x3 y5+
3108x4 y5 + 1050x5 y5 + 115x y6 + 543x2 y6 + 1092x3 y6 + 1204x4 y6+
770x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8
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Table 4: Coe�
ients of yi in U15234,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 5 −6 4 −1

6 −1 8 −13 10 −5 1

7 −1 12 −27 26 −15 6 −1

8 −1 17 −52 65 −45 21 −7 1

Table 5: The polynomials NM15234,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 10x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 23x y2 + 31x2 y2 + 63x y3 + 140x2 y3 + 90x3 y3 + 26x y4 + 91x2 y4+
120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 51x y2 + 63x2 y2 + 272x y3 + 546x2 y3 + 301x3 y3 + 296x y4+
847x2 y4 + 875x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5 + 350x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 110x y2 + 127x2 y2 + 1034x y3 + 1948x2 y3 + 966x3 y3 + 2258x y4+
5746x2 y4 + 5124x3 y4 + 1701x4 y4 + 1181x y5 + 4048x2 y5 + 5502x3 y5+
3640x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6 + 1316x4 y6+
840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8

Table 6: Coe�
ients of yi in U162345,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 4 −6 4 −1

6 −1 6 −10 10 −5 1

7 −1 9 −18 20 −15 6 −1

8 −1 13 −33 41 −35 21 −7 1
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Table 7: The polynomials NM162345,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 11x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 25x y2 + 31x2 y2 + 66x y3 + 146x2 y3 + 90x3 y3 + 26x y4+
91x2 y4 + 120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5+
15x5 y5 + x6 y6

7 x y + 54x y2 + 63x2 y2 + 298x y3 + 581x2 y3 + 301x3 y3 + 302x y4+
868x2 y4 + 896x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5+
350x4 y5 + 140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6+
21x6 y6 + x7 y7

8 x y + 114x y2 + 127x2 y2 + 1151x y3 + 2084x2 y3 + 966x3 y3+
2406x y4 + 6094x2 y4 + 5348x3 y4 + 1701x4 y4 + 1191x y5 + 4096x2 y5+
5586x3 y5 + 3696x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6+
1316x4 y6 + 840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7+
70x5 y7 + 56x6 y7 + 28x7 y7 + x8 y8

Table 8: Coe�
ients of yi in U1324,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 4 −3 1

5 −1 6 −8 4 −1

6 −1 8 −19 13 −5 1

7 −1 10 −34 38 −19 6 −1

8 −1 12 −53 98 −64 26 −7 1
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Table 9: The polynomials NM1324,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 3x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 9x y2 + 15x2 y2 + 8x y3 + 25x2 y3 + 25x3 y3 + x y4 + 5x2 y4 + 10x3 y4+
10x4 y4 + x5 y5

6 x y + 23x y2 + 31x2 y2 + 48x y3 + 119x2 y3 + 90x3 y3 + 20x y4 + 73x2 y4+
105x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 53x y2 + 63x2 y2 + 223x y3 + 490x2 y3 + 301x3 y3 + 207x y4+
644x2 y4 + 749x3 y4 + 350x4 y4 + 47x y5 + 196x2 y5 + 343x3 y5 + 315x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 115x y2 + 127x2 y2 + 925x y3 + 1838x2 y3 + 966x3 y3 + 1602x y4+
4465x2 y4 + 4466x3 y4 + 1701x4 y4 + 810x y5 + 2930x2 y5 + 4298x3 y5+
3164x4 y5 + 1050x5 y5 + 105x y6 + 495x2 y6 + 1008x3 y6 + 1148x4 y6+
770x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8

Table 10: Coe�
ients of yi in U13425,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 5 −6 4 −1

6 −1 7 −12 10 −5 1

7 −1 9 −21 23 −15 6 −1

8 −1 11 −37 47 −39 21 −7 1
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Table 11: The polynomials NM13425,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 10x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 24x y2 + 31x2 y2 + 62x y3 + 140x2 y3 + 90x3 y3 + 26x y4 + 91x2 y4+
120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 54x y2 + 63x2 y2 + 273x y3 + 553x2 y3 + 301x3 y3 + 292x y4+
840x2 y4 + 875x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5 + 350x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 116x y2 + 127x2 y2 + 1071x y3 + 2000x2 y3 + 966x3 y3 + 2228x y4+
5726x2 y4 + 5152x3 y4 + 1701x4 y4 + 1171x y5 + 4016x2 y5 + 5474x3 y5+
3640x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6 + 1316x4 y6+
840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8

Table 12: Coe�
ients of yi in U134526,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 4 −6 4 −1

6 −1 6 −10 10 −5 1

7 −1 8 −17 20 −15 6 −1

8 −1 10 −27 38 −35 21 −7 1
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Table 13: The polynomials NM134526,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 11x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 25x y2 + 31x2 y2 + 66x y3 + 146x2 y3 + 90x3 y3 + 26x y4 + 91x2 y4+
120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 55x y2 + 63x2 y2 + 297x y3 + 581x2 y3 + 301x3 y3 + 302x y4+
868x2 y4 + 896x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5 + 350x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 117x y2 + 127x2 y2 + 1153x y3 + 2092x2 y3 + 966x3 y3 + 2401x y4+
6086x2 y4 + 5348x3 y4 + 1701x4 y4 + 1191x y5 + 4096x2 y5 + 5586x3 y5+
3696x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6 + 1316x4 y6+
840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8


