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Abstrat. We study the generating funtion

∑

n≥0
tn

n!

∑

σ∈NMn(τ) x
LRmin(σ)y1+des(σ)

where NMn(τ ) is the set of

permutations σ in the symmetri group Sn whih have no onseutive ourrenes of τ , τ is of the form 1p2 . . . (p− 1) or
13 . . . (p−1)2p for some p ≥ 4, des(σ) is the number of desents of σ and LRmin(σ) is the number of left-to-right minima

of σ. We show that for any p ≥ 4, this generating funtion is of the form

(

1
Uτ (t,y)

)x

where Uτ (t, y) =
∑

n≥0 Uτ,n(y)
tn

n!

and the oe�ients Uτ,n(y) satisfy some simple reursions depending on p.
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1 Introdution

Given a sequene σ = σ1 . . . σn of distint integers, let the redution of σ, red(σ), be the permutation
found by replaing the ith largest integer that appears in σ by i. For example, if σ = 2 7 5 4, then
red(σ) = 1 4 3 2. Given a permutation τ = τ1 . . . τp in the symmetri group Sp, we say a permutation

σ = σ1 . . . σn ∈ Sn has a τ -math starting at position i provided red(σi . . . σi+p−1) = τ . Let τ -mch(σ)
be the number of τ -mathes in the permutation σ. Given a permutation σ = σ1 . . . σn ∈ Sn, we let

des(σ) = |{i : σi > σi+1}|. We say that σj is a left-to-right minimum of σ if σj < σi for all i < j. We

let LRmin(σ) denote the number of left-to-right minima of σ.
The main objet of study in this paper is the generating funtion

NMτ (t, x, y) =
∑

n≥0

NMτ,n(x, y)
tn

n!
(1)
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where NMn(τ) is the set of permutations in Sn with no τ -mathes and

NMτ,n(x, y) =
∑

σ∈NMn(τ)

xLRmin(σ)y1+des(σ). (2)

In partiular, the main goal of this paper is to ompute the generating funtion NMτ (t, x, y) and the

polynomials NMτ,n(x, y) for two in�nite families of permutations, namely, τ of the form 1p23 . . . (p−1)
and τ of the form 13 . . . (p − 1)2p where p ≥ 4. There are a number of methods that have appeared

in the literature to study the generating funtions for either the distribution of τ -mathes in Sn, see

[9, 5, 20, 24, 16℄, as well as methods to �nd the number of permutations of Sn with no τ -mathes, see

[6, 1, 17, 15℄. None of these approahes tries to study the re�ned generating funtion NMτ,n(x, y).
Instead, we shall use the so-alled reiproity method introdued by the authors in [14℄ to ompute

generating funtions of the form NMτ (t, x, y) where τ is a permutation whih starts with 1. In

partiular, the authors [14℄ proved that in suh a situation, one an always write the generating

funtion NMτ (t, x, y) as

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
. (3)

Thus

Uτ (t, y) =
1

1 +
∑

n≥1NMτ,n(1, y)
tn

n!

. (4)

One an then use the homomorphism method to give a ombinatorial interpretation the right-hand

side of (4) whih an be used to �nd simple reursions for the oe�ients Uτ,n(y). The homomorphism

method derives generating funtions for various permutation statistis by applying a ring homomor-

phism de�ned on the ring of symmetri funtions Λ in in�nitely many variables x1, x2, . . . to simple

symmetri funtion identities suh as

H(t) = 1/E(−t) (5)

where H(t) and E(t) are the generating funtions for the homogeneous and elementary symmetri

funtions, respetively:

H(t) =
∑

n≥0

hnt
n =

∏

i≥1

1

1− xit
, E(t) =

∑

n≥0

ent
n =

∏

i≥1

1 + xit. (6)

See, for example, [2, 18, 19, 20, 21, 22, 23℄. In our ase, we de�ne a homomorphism θ on Λ by setting

θ(en) =
(−1)n

n!
NMτ,n(1, y).

Then

θ(E(−t)) =
∑

n≥0

NMτ,n(1, y)
tn

n!
=

1

Uτ (t, y)
.

Hene

Uτ (t, y) =
1

θ(E(−t))
= θ(H(t))
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whih implies that

n!θ(hn) = Uτ,n(y). (7)

Thus if we an ompute n!θ(hn) for all n ≥ 1, then we an ompute the polynomials Uτ,n(y) and the

generating funtion Uτ (t, y) whih in turn allows us to ompute the generating funtion NMτ (t, x, y).

In [14℄, the authors studied the generating funtions Uτ (t, y) for permutations τ of the form τ =
1324 . . . p where p ≥ 4. That is, τ arises from the identity permutation by transposing 2 and 3. Using

the homomorphism method, the authors [14℄ proved that U1324,1(y) = −y and for n ≥ 2,

U1324,n(y) = (1− y)U1324,n−1(y) +

⌊n/2⌋
∑

k=2

(−y)k−1Ck−1U1324,n−2k+1(y) (8)

where Ck = 1
k+1

(2k
k

)
is the k-th Catalan number. They also proved that for any p ≥ 5, U1324...p,n(y) =

−y and for n ≥ 2,

U1324...p,n(y) = (1− y)U1324...p,n−1(y) +

⌊n−2
p−2

⌋+1
∑

k=2

(−y)k−1U1324...p,n−((k−1)(p−2)+1)(y). (9)

The main goal of this paper is to prove the following two theorems.

Theorem 1.1 Let τ = 1p23 . . . (p− 1) where p ≥ 4. Then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
,

Uτ,1(y) = −y, and, for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋+1
∑

k=2

(−y)k−1

(
n− (k − 1)(p − 3)− 2

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y).

We note that the speial ase of Theorem 1.1 where p = 4 was proved in the extended abstrat

[13℄.

Theorem 1.2 Let τ = 13 . . . (p− 1)2p where p ≥ 4. Then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
,

Uτ,1(y) = −y, and, for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋
∑

k=1

(−y)k
1

(p− 2)k + 1

(
k(p− 1)

k

)

Uτ,n−(k(p−2)+1)(y). (10)
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For p ≥ 5, these two reursions are more ompliated than the reursion for τ of the form 1324 . . . p
given in (9) in that the reursions for τ of the form 1p23 . . . (p − 1) involve binomial oe�ients and

the reursions for τ of the form 13 . . . (p− 1)2p involve oe�ients whih ount the number of (p− 1)-
ary trees. In all three ases desribed above, omputational evidene suggests that the polynomials

Uτ,n(−y) are log-onave polynomials. In the ase where p = 3, the permutation 1p2 . . . (p−1) beomes

132 and the permutation 13 . . . (p − 1)2p beomes 123. The authors omputed expliit formulas for

NM132(t, x, y) and NM123(t, x, y) using other methods in [12℄.

The outline of this paper is as follows. In Setion 2, we reall the bakground in the theory of

symmetri funtions that we will need for our proofs. Then in Setion 3, we prove Theorems 1.1 and

1.2, Finally in Setion 4, we state our onlusions and disuss some areas for further researh.

2 Symmetri funtions

In this setion, we give the neessary bakground on symmetri funtions that will be needed for our

proofs.

A partition of a positive integer n is a vetor of non-zero integers λ = (λ1, . . . , λs) where 0 < λ1 ≤
· · · ≤ λs and n = λ1 + . . . + λs. Eah λi for 1 ≤ i ≤ s is alled a part of λ and we let ℓ(λ) denote
the number of parts of λ. We use the notation λ ⊢ n to mean λ is a partition of n. When a partition

of n involves repeated parts, we shall often use exponents in the partition notation to indiate these

repeated parts. For example, we will write (12, 23, 32) for the partition (1, 1, 2, 2, 2, 3, 3).
Let Λ denote the ring of symmetri funtions in in�nitely many variables x1, x2, . . .. The nth

elementary symmetri funtion en = en(x1, x2, . . .) and nth
homogeneous symmetri funtion hn =

hn(x1, x2, . . .) are de�ned by the generating funtions given in (6). For any partition λ = (λ1, . . . , λℓ),
let eλ = eλ1 · · · eλℓ

and hλ = hλ1 · · · hλℓ
. It is well known that {eλ : λ is a partition} is a basis for

Λ. In partiular, e0, e1, . . . is an algebraially independent set of generators for Λ and, hene, a ring

homomorphism θ on Λ an be de�ned by simply speifying θ(en) for all n.
A key element of our proofs is the ombinatorial desription of the oe�ients of the expansion of

hn in terms of the elementary symmetri funtions eλ given by E§eio§lu and the seond author in

[7℄. They de�ned a λ-brik tabloid of shape (n) with λ ⊢ n to be a retangle of height 1 and length

n whih is overed by �briks� of lengths found in the partition λ in suh a way that no two briks

overlap. For example, Figure 1 shows the six (12, 22)-brik tabloids of shape (6).

Figure 1: All six (12, 22)-brik tabloids of shape (6).

Let Bλ,n denote the set of λ-brik tabloids of shape (n) and let Bλ,n be the number of λ-brik
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tabloids of shape (n). If B ∈ Bλ,n, we will write B = (b1, . . . , bℓ(λ)) if the lengths of the briks in

B, reading from left to right, are b1, . . . , bℓ(λ). Through simple reursions, E§eio§lu and the seond

author [7℄ proved that

hn =
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,n eλ. (11)

This interpretation of hn in terms of en will aid us in desribing the oe�ients of θ(H(t)) = Uτ (t, y)
whih will in turn allow us to ompute the oe�ients NMτ,n(x, y).

3 The proof of Theorems 1.1 and 1.2.

3.1 The homomorphism method and an involution

First we reall the key steps in the required appliation of the homomorphism method for our problem

as desribed in [14℄. Suppose that τ ∈ Sj is a permutation suh that τ starts with 1 and des(τ) = 1.
Our �rst step is to give a ombinatorial interpretation to

Uτ (t, y) =
1

NMτ (t, 1, y)
=

1

1 +
∑

n≥1
tn

n!NMτ,n(1, y)
(12)

where NMτ,n(1, y) =
∑

σ∈NMn(τ)
y1+des(σ)

.

Following [14℄, we de�ne a ring homomorphism θτ on the ring of symmetri funtions Λ by setting

θτ (e0) = 1 and

θτ (en) =
(−1)n

n!
NMτ,n(1, y) for n ≥ 1. (13)

It follows that

θτ (H(t)) =
∑

n≥0

θτ (hn)t
n =

1

θτ (E(−t))
=

1

1 +
∑

n≥1(−t)nθτ (en)

=
1

1 +
∑

n≥1
tn

n!NMτ,n(1, y)
= Uτ (t, y)

whih is what we want to ompute.

By (11), we have that

n!θτ (hn) = n!
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,n θτ (eλ)

= n!
∑

λ⊢n

(−1)n−ℓ(λ)
∑

(b1,...,bℓ(λ))∈Bλ,n

ℓ(λ)
∏

i=1

(−1)bi

bi!
NMτ,bi(1, y)

=
∑

λ⊢n

(−1)ℓ(λ)
∑

(b1,...,bℓ(λ))∈Bλ,n

(
n

b1, . . . , bℓ(λ)

) ℓ(λ)
∏

i=1

NMτ,bi(1, y). (14)

Our next goal is to give a ombinatorial interpretation to the right-hand side of (14). Fix a partition

λ of n and a λ-brik tabloid B = (b1, . . . , bℓ(λ)). Then we an interpret

( n
b1,...,bℓ(λ)

)
as the number of ways
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of piking an ordered set partition (S1, . . . , Sℓ(λ)) of {1, . . . , n} suh that |Si| = bi for i = 1, . . . , ℓ(λ).

We will interpret

∏ℓ(λ)
i=1 NMτ,bi(1, y) as the number of ways of piking permutations (σ(1), . . . , σ(ℓ(λ)))

suh that σ(i) ∈ NMbi(τ) and assigning a weight to this ℓ(λ)-tuple to be

∏ℓ(λ)
i=1 y

des(σ(i))+1
.

We an then use the triple 〈B, (S1, . . . , Sℓ(λ)), (σ
(1), . . . , σ(ℓ(λ)))〉 to onstrut a �lled-labeled-brik

tabloid O〈B,(S1,...,Sℓ(λ)),(σ(1) ,...,σ(ℓ(λ)))〉 as follows. First for eah brik bi, we plae a permutation τ (i) of Si

in the ells of the brik, reading from left to right, so that red(τ (i)) = σ(i)
. Then we label eah ell of bi

that starts a desent of τ (i) with a y and we also label the last ell of bi with y. This aounts for the fa-
tor ydes(σ

(i))+1
. Finally, we use the fator (−1)ℓ(λ) to hange the label of the last ell of eah brik from

y to −y. For example, suppose n = 19, τ = 15234, B = (9, 3, 5, 2), S1 = {2, 5, 6, 9, 11, 15, 16, 17, 19},
S2 = {7, 8, 14}, S3 = {1, 3, 10, 13, 18}, S4 = {4, 12}, σ(1) = 1 6 2 9 7 8 3 4 5 ∈ NMτ,9, σ

(2) = 1 3 2 ∈
NMτ,3, σ

(3) = 5 1 2 4 3 ∈ NMτ,5, and σ(4) = 2 1 ∈ NMτ,2. Then we have pitured the �lled-labeled

brik tabloid O〈B,(S1,...,S4),(σ(1) ,...,σ(4)〉) onstruted from the triple 〈B, (S1, . . . , S4), (σ
(1), . . . , σ(4))〉 in

Figure 2.

= 2 1σ(4)= 1 3 2(2)σ = 5 1 2 4 3(3)σ

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} {4,12} 

σ(1)

2 15 5 19 16 11

= 1 6 2 9 7 8 3 4 5

17 96 7 814 18 1 3 1013 12 4

y y y −y y y y −y y −y

Figure 2: The onstrution of a �lled-labeled-brik tabloid.

Given O = O〈B,(S1,...,Sℓ(λ)),(σ(1) ,...,σ(ℓ(λ)))〉v, let σ be the permutation whih is obtained by reading

the elements in the ells of O from left to right. Then it is easy to see that we an reover O and

the labels on the ells of O from B and σ. Thus we shall speify the �lled-labeled-brik tabloid

O〈B,(S1,...,Sℓ(λ)),(σ
(1) ,...,σ(ℓ(λ)))〉 by (B,σ). We let Oτ,n denote the set of all �lled-labeled-brik tabloids

onstruted in this way. That is, Oτ,n onsists of all pairs O = (B,σ) where

1. B = (b1, . . . , bℓ(λ)) is brik tabloid of shape (n),

2. σ ∈ Sn suh that there is no τ -math of σ whih is entirely ontained in a single brik of B, and

3. if there is a ell c suh that a brik bi ontains both ells c and c + 1 and σc > σc+1, then ell c
is labeled with a y and the last ell of any brik is labeled with −y.

The sign of O, sgn(O), is (−1)ℓ(λ) and the weight of O, W (O), is yℓ(λ)+intdes(σ) where intdes(σ)
denotes the number of i suh that σi > σi+1 and σi and σi+1 lie in the same brik. We shall refer to

suh i as an internal desent of O. For example, if τ = 15234, then suh a �lled-labeled-brik tabloid

O onstruted from the brik tabloid B = (2, 8, 3) is pitured in Figure 3 where W (O) = y7 and
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sgn(O) = (−1)3. Note that the labels on O are ompletely determined by the underlying brik tabloid

B = (b1, . . . , bℓ(λ)) and the underlying permutation σ. Thus the �lled-labeled-brik tabloid O pitured

in Figure 3 equals ((2, 8, 3), 4 11 7 8 10 5 12 3 9 6 2 1 13).

It follows that

n!θτ (hn) =
∑

O∈Oτ,n

sgn(O)W (O). (15)

5 12 3 9 6 2 1 134

yy y −y y −y−y

711 108

Figure 3: An element of O15234,13.

We shall often want to start with a �lled-labeled-brik tabloid O = (B,σ) and remove the �rst k
ells of O and onsider the resulting objet redk(B,σ) = (B′, α) where B′

is the brik tabloid whose

briks end at those ells c > k where ell c is the end of a brik in B and whose permutation α is

red(σk+1 . . . σn). For example, if O is the �lled-labeled-brik tabloid pitured in Figure 3, then red4(O)
is pitured in Figure 4.

3 2 1

yy y −y y −y

4 567 8 9

Figure 4: red4(O) for O in Figure 3.

Next we de�ne a weight-preserving sign-reversing involution Iτ on Oτ,n. Given an element O =
(B,σ) ∈ Oτ,n where B = (b1, . . . , bk) and σ = σ1 . . . σn, san the ells of O from left to right looking

for the �rst ell c suh that either

(i) c is labeled with a y or

(ii) c is a ell at the end of a brik bi, σc > σc+1, and there is no τ -math of σ that lies entirely in

the ells of briks bi and bi+1.

In ase (i), if c is a ell in brik bj , then we split bj into two briks b′j and b′′j where b′j ontains all

the ells of bj up to an inluding ell c and b′′j onsists of the remaining ells of bj and we hange the

label on ell c from y to −y. In ase (ii), we ombine the two briks bi and bi+1 into a single brik b
and hange the label on ell c from −y to y. For example, onsider the element O ∈ O13245,13 pitured

in Figure 3. Note that even though the number in the last ell of brik 1 is greater than the the

number in the �rst ell of brik 2, we an not ombine these two briks beause 4 11 7 8 10 would be a

15234-math. Thus the �rst plae that we an apply the involution is on ell 5 whih is labeled with a

y so that Iτ (O) is the objet pitured in Figure 5. Finally, if neither ase (i) or ase (ii) applies, then

we de�ne Iτ (O) = O.
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5 12 3 9 6 2 1 134

y y −y y −y−y

7

−y

11 108

Figure 5: Iτ (O) for O in Figure 3.

In [14℄, the authors proved that I is an involution if τ starts with 1 and des(τ) = 1. It is lear from
our de�nitions that if Iτ (O) 6= O, then sgn(O)W (O) = −sgn(Iτ (O))W (Iτ (O)). Hene it follows from
(15) that

n!θτ (hn) =
∑

O∈Oτ,n

sgn(O)W (O) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O). (16)

Hene if τ starts with 1 and des(τ) = 1, then

Uτ,n(y) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O). (17)

Thus to ompute Uτ,n(y), we must analyze the �xed points of Iτ .
Note that if O is a �xed point of Iτ , then we an not apply ase (i) of Iτ so that there an be no

ells labeled with y whih means that the elements in eah brik of O must be inreasing. Similarly,

we annot apply ase (ii) of Iτ so that if bi and bi+1 are two onseutive briks in O, then either there

is an inrease between briks bi and bi+1, i.e. the last element in bi is less than the �rst element of bi+1,

or there is τ -math ontained in the elements of the ells of bi and bi+1 whih must neessarily involve

both the last element in bi and the �rst element of bi+1. In addition, the authors proved in [14℄ that

in the ase where τ starts with 1 and des(τ) = 1, every �xed point O of Iτ has the additional property

that the �rst elements in the briks of O form an inreasing sequene, reading from left to right. Thus

we have the following lemma.

Lemma 3.1 Suppose that τ ∈ Sj, τ starts with 1, and des(τ) = 1. Let θτ : Λ → Q(y) be the ring

homomorphism de�ned on Λ where Q(y) is the set of rational funtions in the variable y over the

rationals Q, θτ (e0) = 1, and θτ (en) =
(−1)n

n! NMτ,n(1, y) for n ≥ 1. Then

n!θτ (hn) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O) (18)

where Oτ,n is the set of objets and Iτ is the involution de�ned above. Moreover, O = (B,σ) ∈ Oτ,n

where B = (b1, . . . , bk) and σ = σ1 . . . , σn is a �xed point of Iτ if and only if O satis�es the following

three properties:

1. there are no ells labeled with y in O, i.e., the elements in eah brik of O are inreasing,

2. the �rst elements in eah brik of O form an inreasing sequene, reading from left to right, and

3. if bi and bi+1 are two onseutive briks in O, then either (a) there is inrease between bi and
bi+1, i.e., σ∑i

j=1 |bj |
< σ1+

∑i
j=1 |bj |

, or (b) there is a derease between bi and bi+1, i.e., σ∑i
j=1 |bj |

>

σ1+
∑i

j=1 |bj |
, but there is τ -math ontained in the elements of the ells of bi and bi+1 whih must

neessarily involve σ∑i
j=1 |bj |

and σ1+
∑i

j=1 |bj |
.
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3.2 Proof of Theorem 1.1

Let τ = 1p23 . . . (p− 1) where p ≥ 4. Then by (17), we must show that the oe�ients

Uτ,n(y) =
∑

O∈Oτ,n,Iτ (O)=O

sgn(O)W (O)

have the following properties:

1. Uτ,1(y) = −y, and

2. for n > 1,

Uτ,n(y) = (1− y)Uτ,n−1(y) +
∑⌊n−2

p−2
⌋+1

k=2 (−y)k−1
(n−(k−1)(p−3)−2

k−1

)
Uτ,n−(((k−1)(p−2)+1)(y).

Property (1) is immediate sine there is only one �lled-labeled-brik tabloid O of size 1, namely,

O = ((1), 1), and sgn(O) = −1 and W (O) = y.
Next assume that n > 1 and O = (B,σ) ∈ Oτ,n is a �xed point of Iτ where B = (b1, . . . , bk) and

σ = σ1 . . . σn. By Lemma 3.1, we know that 1 is in the �rst ell of O so that σ1 = 1.
We laim that 2 must be in the seond or third ell of O. That is, it must be the ase that either

σ2 = 2 or σ3 = 2. To prove this, suppose for a ontradition that σc = 2 where c > 3. Sine there

are no desents within any brik, 2 must be in the �rst ell of its brik. Moreover, sine the minimal

elements in the briks of O form an inreasing sequene, reading from left to right, 2 must be in the �rst
ell of the seond brik b2 so that c = |b1|+1. Sine c > 3, |b1| ≥ 3 whih implies that 1 < σc−2 < σc−1

and σc−2 > σc = 2. However, by part (b) of part 3 of Lemma 3.1, this means that there must be a

τ -math that involves σc−1 and σc. Sine τ has only one desent, this would mean that σc−2σc−1σc
would have to play the role of 1p2 in the τ -math whih is impossible sine σc−2 > σc.

We now have two ases depending on whether σ2 = 2 or σ3 = 2.

Case 1. σ2 = 2.

In this ase there are two possibilities, namely, either (i) 1 and 2 are both in the �rst brik b1 of

O or (ii) brik b1 is a single ell �lled with 1 and 2 is in the �rst ell of the seond brik b2 of O. In

either ase, we know that 1 is not part of a 1p23 . . . (p− 1)-math in O sine 2 annot play the role of

p in 1p23 . . . (p− 1)-math in O. It follows that red1(O) satis�es onditions (1), (2), and (3) of Lemma

3.1 and, hene, red1(O) is a �xed point of Iτ . In ase (i), we see that sgn(O) = sgn(red1(O)) and

W (O) = W (red1(O)) and, in ase (ii), sgn(O) = −sgn(red1(O)) and W (O) = yW (red1(O)).
Moreover, we an reate a �xed point O = (B,σ) ∈ On satisfying onditions (1), (2) and (3) of

Lemma 3.1 where σ2 = 2 by starting with a �xed point (B′, σ′) ∈ Oτ,n−1 of Iτ , where B
′ = (b′1, . . . , b

′
r)

and σ′ = σ′
1 . . . σ

′
n−1, and then letting σ = 1(σ′

1 + 1) . . . (σ′
n−1 + 1), and setting B = (1, b′1, . . . , b

′
r) or

setting B = (1 + b′1, . . . , b
′
r).

It follows that �xed points in Case 1 will ontribute (1− y)Uτ,n−1(y) to Uτ,n(y).

Case 2. σ3 = 2.

Sine there are no desents within briks in O and the minimal elements of the briks are inreas-

ing, reading from left to right, it must be the ase that 2 is in the �rst ell of brik b2. Thus it must
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be the ase that b1 has two ells and σ2 > σ3. By part (b) of ondition 3 of Lemma 3.1, there must be

exist a τ -math among the elements of briks b1 and b2 that involves σ2 and σ3. The only way this is

possible is if the τ -math starts in ell 1 so that red(σ1 . . . σp) = 1p23 . . . (p − 1). Hene b2 must have

at least p− 2 ells.

Next we laim that σp−1 = p−2. That is, we know that σp−1 must be greater than σ1, σ3, . . . , σp−2

so that σp−1 ≥ p−2. Next suppose for a ontradition that σp−1 > p−2. Then let i be the least number
in the set {1, . . . , p− 2} that is not ontained in briks b1 and b2. Sine the numbers in eah brik are

inreasing and the minimal elements of the briks are inreasing, the only possible position for i is the
�rst ell of brik b3. But then it follows that there is a desent between the last ell of brik b2 and the

�rst ell of b3. Sine O is a �xed point of Iτ , this must mean that there is a τ -math that inludes the

last ell of b2 and the �rst ell of b3. But sine τ has only one desent, this τ -math an only start at

the ell c = b1 + b2 − 1 whih is the penultimate ell of b2. Thus c ould be p− 1 if b2 has p − 2 ells

or c > p− 1 if b2 has more than p− 2 ells. In either ase, p− 1 ≤ σp−1 ≤ σc < σc+1 > σc+2 = i. But
this is impossible sine to have a τ -math starting at ell c, we must have σc < σc+2. Thus it must be

the ase that σp−1 = p− 2 and {σ1, . . . , σp−1} − {σ2} = {1, . . . , p − 2}.
We now have two subases depending on whether or not there is a τ -math in O starting at ell p−1.

Subase 2.1. There is no τ -math in O starting at ell p− 1.

First, we laim that in this ase σp = p − 1. That is, if σp 6= p − 1, then σp > p − 1. This

means that p − 1 annot be in brik b2. Similarly, p − 1 annot be σ2 sine the fat that there is a

1p2 . . . (p − 1)-math starting at ell 1 means that σ2 > σp > p − 1. Thus p − 1 must be in the �rst

ell of the brik b3. This would imply that there is a desent between the last ell of b2 and the �rst

ell of b3 sine p − 1 < σp and σp is in b2. Sine there is no τ -math in O starting at ell p − 1, the
only possible τ -math ontained the ells of b2 and b3 would have to start at ell c where c 6= p− 1. It
annot be that c < p − 1 sine then it would be the ase that σc < σc+1 < σc+2. Also, it annot be

that c > p− 1 sine then σc > p− 1 and σc must be the least integer in the τ -math. Thus it must be

the ase that σp = p− 1.
Then we have that O′ = redp−1(O) satis�es onditions (1), (2), and (3) of Lemma 3.1. Hene it

follows that O′ = redp−1(O) is a �xed point of Iτ in Oτ,n−(p−1) suh that sgn(O) = −sgn(redp−1(O))
and W (O) = yW (redp−1(O)). Note that if b2 has p − 2 ells, then O′

will start with a brik of size

one and if b2 has more than p − 2 ells, then O′
will start with a brik of size at least two. On

the other hand, if we start with �xed point O′ = (B′, σ′) ∈ Oτ,n−(p−1) of Iτ , then we an onstrut

a �lled-brik tabloid O = (B,σ) ∈ Oτ,n satisfying onditions (1), (2), and (3) of Lemma 3.1 whih

has a τ -math starting at ell 1, but has no τ -math starting at ell p − 1 in O, by �rst piking

σ2 ∈ {p, . . . , n}, then letting σ1 = 1, σ3 = 2, σ4 = 3, . . . , σp−1 = p − 1 and letting σp · · · σn be per-

mutation of {1, . . . , n} − {σ1, . . . , σp−1} suh that red(σp · · · σn) = σ′
. If B′ = (b′1, b

′
2, . . . , b

′
s), we let

B = (2, p − 3 + b′1, b
′
2, . . . , b

′
s). Hene (B,σ) is a �xed point of Iτ . It follows that the �xed points in

Subase 2.1 will ontribute (−y)(n − (p− 1))Uτ,n−(p−1)(y) to Uτ,n(y).

Subase 2.2. There is a τ -math starting at ell (p− 1) in O.

In this subase, it must be that σp−1 < σp > σp+1 so that b2 must have p − 2 ells and brik b3
starts at ell p+ 1. We laim that b3 must have at least p− 2 ells. That is, there must be a τ -math
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that inludes the last ell of b2 and the �rst ell of b3 and sine the pattern τ is of length p, b3 must

have at least p− 2 ells. Moreover, there is a τ -math that starts at ell 1 and another one that starts

at ell p − 1. These two τ -mathes overlap on σp−1 and σp. In general, assume that there is hain of

τ -mathes in O = (B,σ) starting at ell 1 where eah onseutive pair of τ -mathes overlap on two

ells. Suppose there are exatly k−1 suh τ -mathes in this hain. Then the jth τ -math starts at the

penultimate ell of brik bj . Brik b1 must have two ells and brik bj must have p − 2 ells for eah

2 ≤ j ≤ k−1 and brik bk must have at least p−2 ells. Let rj be an integer suh that the jth τ -math

starts at ell rj . Thus rj = 1 + (j − 1)(p − 2) for 1 ≤ j ≤ k − 1. De�ne rk = 1 + (k − 1)(p − 2) and
assume that O does not have a τ -math starting at position rk. Thus we have the situation pitured

below in Figure 3.2.

σ1 σ2
︸ ︷︷ ︸

b1

r2

σ3 ··· σr2 σr2+1
︸ ︷︷ ︸

b2

...
rk−1

··· σrk−1
σrk−1+1

︸ ︷︷ ︸
bk−1

rk

··· σrk σrk+1 ···
︸ ︷︷ ︸

bk

Figure 6: An example of a brik tabloid with a hain of k − 1 τ -mathes eah starting at rj .

First we laim σrj = rj − (j − 1) and

{1, . . . , rj − (j − 1)} = {σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1}

for j = 1, . . . , k. We have shown that σ1 = 1 and that σr2 = σp−1 = p− 2 and

{σ1, . . . , σp−1} − {σ2} = {1, . . . , p − 2}. Thus assume by indution, σrj−1 = rj−1 − (j − 2) and
{1, . . . , rj−1 − (j − 2)} = {σ1, . . . , σrj−1} − {σri+1 : i = 1, . . . , j − 2}. Sine there is a τ -math that

starts at ell rj−1 and p ≥ 4, we know that all the integers in

{σrj−1 , σrj−1+1, σrj−1+2, . . . , σrj−1+p−3} − {σrj−1+1}

are less than σrj = σrj−1+p−2. Sine

{1, . . . , rj−1 − (j − 2)} = {σ1, . . . , σrj−1} − {σri+1 : i = 1, . . . , j − 2},

it follows that σrj ≥ rj−1 − (j − 2) + (p− 3) = rj − (j − 1).
Next suppose that σrj > rj − (j − 1). Then let i be the least integer whih is in

{1, . . . , rj − (j − 1)} − ({σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1}).

Our assumptions ensure that σr1+1 > σr2+1 > . . . > σrj+1 so that i does not lie in the briks b1, . . . , bj .
Beause the integers in eah brik inrease and the minimal integers in the briks are inreasing, it

must be the ase that i is in the �rst ell of the next brik bj+1. Now it annot be that j < k beause

then we have that i = σrj+2 ≤ rj − (j − 1) < σrj < σrj+1 whih would violate the fat that there is a

τ -math in O starting at ell rj . If j = k, then it follows that there is a desent between the last ell

of bk and the �rst ell of bk+1 sine i is in the �rst ell of bk+1 and i ≤ rk − (k − 1) < σrk . Sine O
is a �xed point of Iτ , this must mean that there is a τ -math that inludes the last ell of bk and the

�rst ell of bk+1. But sine τ has only one desent, this τ -math an only start at the ell c whih is
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the penultimate ell of bk. Thus c must be greater than rk beause we are assuming that there is no

τ -math starting at ell rk. Hene bk+1 must have more than p − 2 ells. In this ase, we have that

i ≤ rk − (k − 1) < σrk ≤ σc < σc+1 > σc+2 = i. But this annot be sine to have a τ -math starting

at ell c, we must have σc < σc+2. Therefore it is not true that σrj > rj − (j − 1) so that it must be

the ase that σrj = rj − (j − 1). Finally sine

1. {1, . . . , rj−1 − (j − 2)} = {σ1, . . . , σrj−1} − {σri+1 : i = 1, . . . , j − 2} and

2. σrj−1 , σrj−1+2, . . . , σrj−1+p−3 < σrj ,

it must be the ase that

{1, . . . , rj − (j − 1)} = {σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1}

as desired. Thus we have proved by indution that σrj = rj − (j − 1) and {1, . . . , rj − (j − 1)} =
{σ1, . . . , σrj} − {σri+1 : i = 1, . . . , j − 1} for j = 1, . . . , k.

This means that the positions of the elements in the set {σ1, . . . , σrk} − {σri+1 : i = 1, . . . , k − 1}
are ompletely determined. Next we laim that sine there is no τ -math starting at position rk, it
must be the ase that σrk+1 = rk − (k− 1) + 1 = rk − k+2. That is, sine there is a τ -math starting

at ell rj for j = 1, . . . , k − 1, it must be the ase that σr1+1 > σr2+1 > · · · > σrk−1+1 > σrk+1. If

σrk+1 6= rk − k + 2, then σrk+1 > rk − k + 2 and, hene, rk − k + 2 annot be in any of the briks

b1, . . . , bk. Thus rk − k + 2 must be in the �rst ell of the brik bk+1. But then there will be a desent

between the last ell of bk and the �rst ell of bk+1 sine rk − k + 2 < σrk+1 and σrk+1 is in bk. Sine
there is no τ -math starting at ell rk, the only possible τ -math among the ells of bk and bk+1 would

have to start at a ell c with c 6= rk. But it annot be that c < rk sine then σc < σc+1 < σc+2.

Similarly, it annot be that c > rk sine then σc > rk − k + 2 and rk − k + 2 would have to be part

of the τ -math whih means that σc ould not play the role of 1 in the τ -math. Thus it must be the

ase that σrk+1 = rk − k + 2.

It follows that O′ = redrk(O) satis�es onditions (1), (2), and (3) of Lemma 3.1 and hene is a

�xed point of Iτ in Oτ,n−rk . Note that if bk has p − 2 ells, then the �rst brik of O′
will be of size

1 and if bk has more than p − 2 ells, then the �rst brik of O′
will have size at least two. Sine

there is a τ -math starting at eah of the ells rj for j = 1, . . . , k − 1, it must be the ase that

σr1+1 > σr2+1 > · · · > σrk−1+1 > σrk+1 = rk − k + 2. On the other hand, if we start with any �xed

point O′ = (B′, σ′) ∈ Oτ,n−rk of Iτ where B′ = (b′1, . . . , b
′
s), then we an reate �lled-labeled-brik

tabloid O = (B,σ) ∈ Oτ,n satisfying onditions (1), (2), and (3) of Lemma 3.1 whih has τ -mathes

starting at positions 1, r1, . . . , rk−1 but no τ -math starting at position rk by letting the �rst k − 1
briks of B be a brik of size 2 followed by k − 2 briks of size p − 2 and then having the k-th brik

of B be a size p− 2 + b′1 and the remaining briks be b′2, . . . , b
′
s. The permutation σ is onstruted by

ensuring that

(i) the elements 1, . . . , rk − k − 2 oupy the set of ells {1, . . . , rk + 1} − {ri + 1 : i = 1, . . . , k − 1},
reading from left to right,

(ii) there are k−1 integers a1 > · · · > ak−1 from {rk+k−1, . . . , n} whih oupy ells r1+1, . . . , rk−1+
1, reading from left to right, and
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(iii) σrk−k+1 . . . σn is a permutation of {1, . . . , n}− ({1, . . . , rk − k+2} ∪ {a1, . . . , ak−1}) that redues
to σ′

.

Eah suh (B,σ) will be a �xed point of Iτ suh that σ has a hain of τ -mathes that start at σ1 and

overlap in exatly two elements. Note that we have

(n−(rk−k−2)
k−1

)
=

(n−(k−1)(p−3)−2
k−1

)
ways hoose the

numbers a1, . . . , ak−1. Moreover, W (O) = yk−1W (O′) and sgn(O) = (−1)k−1sgn(O′). It follows that
the �xed points in Subase 2.2 will ontribute

⌊n−2
p−2

⌋+1
∑

k≥3

(−y)k−1

(
n− (k − 1)(p − 3)− 2

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y)

to Uτ,n(y).

Hene we have proved that if τ = 1p23 . . . (p− 1) where p ≥ 4, then

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x

where Uτ (t, y) = 1 +
∑

n≥1

Uτ,n(y)
tn

n!
,

Uτ,1(y) = −y, and, for n > 1,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋+1
∑

k=2

(−y)k−1

(
n− (k − 1)(p − 3)− 2

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y).

Thus Theorem 1.1 holds as desired.

For any polynomial f(x), we let f(x)|xk denote the oe�ient of xk in f(x). We have used Theorem

1.1 to ompute tables of the oe�ients U1p23...p,n(y)|yi for n ≤ 8 and p = 4, 5, 6. Having determined

these polynomials U1p23...p,n(y), we have used Mathematia to ompute tables of the polynomials

NM1p23...p−1,n(x, y) for n ≤ 8 and p = 4, 5, 6. See Tables 2-7 in Appendix I.

We note that there are many terms in these expansions whih are easily explained. For example, the

identity permutation ǫ = 12 . . . n orresponds to the term xy in NM1p23...(p−1),n(x, y) and the reverse

of the identity permutations ǫ = n(n− 1) . . . 21 orresponds to the term xnyn in NM1p23...(p−1),n(x, y).
More generally, we laim that NM1p2...(p−1),n(x, y)|xkyk is always the Stirling number of the seond kind

S(n, k) whih is the number of set partitions of {1, . . . , n} into k parts. That is, a permutation σ ∈ Sn

that ontributes to the oe�ient xkyk in NM1p2...(p−1),n(x, y) must have k left-to-right minima and

k− 1 desents. Sine eah left-to-right minima of σ whih is not the �rst element is always the seond

element of a desent pair, it follows that if 1 = i1 < i2 < i3 < · · · < ik are the positions of the left

to right minima, then σ must be inreasing in eah of the intervals [1, i2), [i2, i3), . . . , [ik−1, ik), [ik, n].
But this means that

{σ1, . . . , σi2−1}, {σi2 , . . . , σi3−1}, . . . , {σik−1
, . . . , σik−1}, {σik , . . . , σn}

is just a set partition of {1, . . . , n} ordered by dereasing minimal elements. Moreover, no suh per-

mutation an have a 1p2 . . . (p− 1)-math for any p ≥ 4. Vie versa, if A1, . . . , Ak is a set partition of

{1, . . . , n} suh that min(A1) > · · · > min(Ak), then the permutation σ = Ak ↑ Ak−1 ↑ . . . A1 ↑ is a

permutation with k left-to-right minima and k − 1 desents where for any set A ⊆ {1, . . . , n}, A ↑ is

the list of the elements of A in inreasing order. It follows that for any p ≥ 4,
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1. NM1p2...(p−1),n(x, y)|xy = S(n, 1) = 1,

2. NM1p2...(p−1)(x, y)|x2y2 = S(n, 2) = 2n−1 − 1,

3. NM1p2...(p−1)(x, y)|xnyn = S(n, n) = 1, and

4. NM1p2...(p−1)(x, y)|xn−1yn−1 = S(n, n− 1) =
(
n
2

)
.

It is also not di�ult to determine NM1p23...(p−1),n(x, y)|xy2 whih orresponds to those permuta-

tions σ ∈ NM1p23...(p−1),n whih have one desent and LRmin(σ) = 1 so that the �rst element of σ
must be 1. First we an reate a permutation with one desent by piking any subset A ⊆ {1, . . . , n}
and letting σA,n be the permutation whih onsists of the elements of A in inreasing order followed

by the elements of {1, . . . , n} − A in inreasing order. For example if n = 6 and A = {2, 4}, then
σA,6 = 241356. Clearly if A equals ∅ or A = {1, . . . , i} for some i ≤ n, then σA,n is just the identity

permutation whih has no desents. Thus the number of permutations of Sn with exatly one desent

is 2n − n− 1. We have already shown that the number of permutations σ ∈ Sn suh that des(σ) = 1
and σ does not start with 1 is 2n−1 − 1. It follows that there are 2n − (n+1)− (2n−1 − 1) = 2n−1 − n
permutations σ ∈ Sn that have one desent and start with 1. Next we have to determine the number

of permutations of Sn that have one desent and start with 1 whih have a 1p23 . . . (p − 1)-math.

Clearly if n < p, then there are no σ ∈ Sn suh that des(σ) = 1 and σ has a 1p23 . . . (p − 1)-math.

If 1 ∈ A and σA,n does have 1p23 . . . (p − 1)-math, then the largest 2 elements of A must play the

role of 1 and p in the 1p23 . . . (p − 1)-math in σA and �rst (p − 2) elements of {1, . . . , n} − A must

play the role of 2 . . . (p − 1) in the 1p23 . . . (p − 1)-math in σA. It follows that all but the largest

element of A must be smaller than all the elements {1, . . . , n} − A and the �rst (p − 2) elements

of {1, . . . , n} − A must be smaller than the largest element of A. Hene σA,n must be of the form

1 . . . s (s+1) x (s+2) (s+3) . . . (s+ p− 1) . . . where x > (s+ p− 1) for some 0 ≤ s ≤ n− p. Thus for
any given s, we have n − (s+ p − 1) hoies for x. Hene if n ≥ p, the number of σ ∈ Sn whih have

one desent, start with 1, and have one 1p23 . . . (p− 1)-math is

n−p
∑

s=0

(n− (s+ p− 1)) =

(
n− p+ 2

2

)

.

It then follows that for all p ≥ 4,

NM1p23...p−1,n(x, y)|xy2 =

{

2n−1 − n for n < p

2n−1 − n−
(n−p+2

2

)
for n ≥ p.

3.3 Proof of Theorem 1.2

Let τ = 13 . . . (p − 1)2p where p ≥ 4. Then we want to show that Uτ,1(y) = −y and for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋
∑

k=1

(−y)k
1

(p− 2)k + 1

(
k(p− 1)

k

)

Uτ,n−(k(p−2)+1)(y). (19)

Again we must study the �xed points of Iτ for τ = 13 . . . (p− 1)2p where p ≥ 4.
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Let O = (B,σ) be a �xed point of Iτ where B = (b1, . . . , bk) and σ = σ1 . . . σn. By Lemma 3.1,

we know that σ1 = 1. We laim that σ2 = 2 or σp−1 = 2. To show this, suppose that σc = 2 where

c /∈ {2, p − 1}. Sine there are no desents within any brik, 2 must be in the �rst ell of a brik.

Moreover, sine the minimal elements in the briks of O form an inreasing sequene, reading from left

to right, 2 must be in the �rst ell of b2. Thus 1 is in the �rst ell of b1 and 2 is in the �rst ell of b2.
Then there is a desent between the last ell of b1 and the �rst ell of b2. By Lemma 3.1, this means

that there is a τ -math in σ ontained in the ells in briks b1 and b2 that involves the element in the

last ell of b1, namely σc−1, and the element in the �rst ell of b2, namely σc = 2. Clearly, σc must
play the role of 2 in the τ -math whih means that the τ -math starts at ell 1 sine only 1 an play

the role of the 1 in the τ -math. But then it follows that c must be equal to (p− 1) whih ontradits

our hoie of c. Hene it must be the ase that σc = 2 where c ∈ {2, p − 1}. Thus we have two ases

to onsider.

Case I. σ2 = 2.

In this ase, we an use the same argument that we used in Case 1 above to show that the �xed

points in Case I will ontribute (1− y)Uτ,n−1(y) to Uτ,n(y).

Case II. σp−1 = 2.

Then σp−1 must be the �rst ell of b2 so that b1 has p − 2 ells and σp−2 > σp−1 = 2. By ondi-

tion 3 of Lemma 3.1, there must be a τ -math that involves σp−2 and σp−1 ontained in the ells of b1
and b2 whih means that b2 must ontain at least 2 ells. We now have two subases based on whether

or not there is a τ -math in O starting at ell (p− 1).

Subase II.1. There is no τ -math in O starting at ell (p − 1).

We laim that σp = p. First observe that σp must be greater than or equal to σ1, . . . , σp−1 sine

there is a τ -math starting at ell 1. Thus σp ≥ p. If σp > p, then p annot be in brik b2. Sine

brik b1 has p − 2 ells and 1 is in b1, we annot have all of the integers 3, . . . , p in b1 so let i be the
least integer in {3, . . . , p} whih is not in b1. Sine σp > p, we know i annot be in brik b2. Sine

the minimal elements in the briks are inreasing, it must be the ase that i is in the �rst ell of brik

b3 and there is a desent between the last ell of b2 and the �rst ell of b3. This implies that there is

a τ -math that inludes the last ell of b2 and the �rst ell of b3. Sine we are assuming there is no

τ -math starting at ell p − 1, this τ -math must start at some ell c where c > p − 1. But this is

impossible sine i whih is in the �rst ell of b3 must play the role of 2 in that τ -math and σc must
play the role of 1 in that τ -math and we know that i ≤ p < σp ≤ σc. Hene it must be the ase that
σp = p whih fores that σ1 . . . σp = 13 . . . (p − 1)2p.

Then it is not hard to hek that redp−1(O) satis�es onditions (1), (2), and (3) of Lemma 3.1 and

hene it is a �xed point of Iτ in Oτ,n−(p−1) suh that W (O) = yW (O′) and sgn(O) = −sgn(O′). Vie
versa, if we are given a �xed point of O′ = (B′, σ′) ∈ Oτ,n−(p−1) of Iτ satisfying onditions (1), (2), and
(3) of Lemma 3.1 where B′ = (b′1, . . . , b

′
s) and σ′ = σ′

1 . . . σ
′
n−(p−1), then we an onstrut a �xed point

O = (B,σ) ∈ Oτ,n of Iτ suh that O has a τ -math starting at ell 1 but does not have a τ -math start-
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ing at ell (p−1), be letting B = (p−2, 2+ b′1, . . . , b
′
s) and σ = 13 . . . (p−1)2p(σ′

2+p) . . . (σ′
n−p−1+p).

It follows that �xed points in Subase II.1 will ontribute (−y)Uτ,n−(p−1)(y) to Uτ,n(y).

Subase II.2. There is a τ -math starting at ell (p− 1).

In this ase, it must be that σp−1 < σ2p−3 < σp < · · · < σ2p−4. We laim that b2 must be of

size p − 2. Clearly, b2 has at most p − 2 ells sine the elements in eah brik are inreasing and

σ2p−4 > σ2p−3. Now if b2 has less than p− 2 ells, then ell (2p− 3) must be the �rst ell of some brik

bk and brik bk−1 would have less than p − 2 ells. Then all the elements in bk−1 are stritly larger

than the �rst element of bk so that it would not be possible to have a τ -math ontained in the briks

bk−1 and bk whih would ontradit the fat that O is a �xed point of Iτ by Lemma 3.1. Thus brik

b2 has p− 2 ells whih, in turn, implies that brik b3 must have at least 2 ells. That is, if b3 has less
than 2 ells, there ould be no τ -math among the ells of b2 and b3 even though there is a desent

between the last ell of b2 and the �rst ell of b3 violating the fat that O is a �xed point of Iτ .
Notie here that there is a τ -math that starts at ell 1 and another one that starts at ell (p− 1).

These two τ -mathes overlap on the ells (p − 1) and p. In general, assume that there is a hain

of τ -mathes starting at ell 1 that eah overlap by two ells. Suppose there are exatly k − 1 suh

τ -mathes in this hain. Then the jth τ -math starts at the �rst ell of brik bj . Brik bj must have
p − 2 ells for eah 1 ≤ j ≤ k − 1 and brik bk must have at least 2 ells. Let rj be an integer suh

that the jth τ -math starts at ell rj . Then it follows that rj = 1 + (j − 1)(p − 2) for 1 ≤ j ≤ k − 1.
De�ne rk = 1 + (k − 1)(p − 2) and assume that O does not have a τ -math starting at ell rk.

Next we laim that σrk+1 = rk+1 and {σ1, . . . , σrk , σrk+1} = {1, . . . , rk+1}. That is, sine there are
τ -mathes starting at positions r1, r2, . . . , rk−1, we have that σrj , . . . , σrj+1 < σrj+1+1 for eah 1 ≤ j ≤
k−1. It follows that σrk+1 is greater than σi for i = 1, . . . , rk so that σrk+1 ≥ rk+1. For a ontradition,
assume that σrk+1 > rk+1. It then follows that there is at least one i ∈ {1, . . . , rk+1} whih does not

appear in the �rst rk + 1 ells of O so let j be the least element in {1, . . . , rk + 1} − {σ1, . . . , σrk+1}.
Then j annot lie in brik bk beause j < σrk+1 and brik bk starts at ell rk + 1 so that j must be

in the �rst ell of brik bk+1. Thus there is a desent between the last ell of bk and the �rst ell of

bk+1. But then we laim that there an be no τ -math that inludes the last ell of bk the �rst ell of

bk+1. That is, we are assuming that there is no τ -math starting at ell rk in O. Thus if there is a

τ -math ontained in the ells of bk and bk+1, it must start after position rk and involve j. But j is

less than all the integers in brik bk that appear after ell rk whih means that none of them an play

the role of 1 in suh a τ -math. This violates the fat that O is a �xed point of Iτ . Thus it must be
the ase that σrk+1 = rk + 1. Sine σrk+1 is greater than σi for i = 1, . . . , rk, it automatially follows

that {σ1, . . . , σrk+1} = {1, . . . , rk + 1}.
It is then easy to hek that O′ = redrk(O) satis�es onditions (1), (2), and (3) of Lemma 3.1 and

hene it is a �xed point of Iτ in Oτ,n−rk . Moreover, sine eah of the �rst k − 1 briks ontributes a

fator of −y to sgn(O)W (O), we have that sgn(O′)W (O′) = (−y)k−1sgn(O)W (O). On the other hand,

if we start with �xed point O′ = (B′, σ′) ∈ Oτ,n−rk of Iτ where B′ = (b′1, . . . , b
′
s) and σ′ = σ′

1 . . . σ
′
n−rk

,

then we an reate an O = (B,σ) ∈ Oτ,n satisfying onditions (1), (2), and (3) of Lemma 3.1 whih

neessarily will be a �xed point of Iτ where O has τ -mathes starting at positions 1, r2, . . . , rk−1 but

not at rk by letting σ = σ1 . . . σrk+1(rk + σ′
2) . . . (rk + σ′

n−rk
) where σ1 . . . σrk+1 is a permutation of

Srk+1 whih has τ -mathes starting at positions 1, r2, . . . , rk−1 and letting B start out with k−1 briks
of size p− 2 followed by a brik of size p− 2+ b′1 followed by b′2, . . . , b

′
s. It follows that the ontribution
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of suh �xed points to Uτ,n(y) is (−y)k−1Dτ,rk+1Uτ,n−(k−1)(p−2)+1)(y) where Dτ,rk+1 is the number of

σ ∈ Srk+1 suh that there are τ -mathes in σ starting at positions 1, r2, . . . , rk−1.

Fortunately, Harmse proved a formula in his thesis [10℄ from whih we an obtain a formula for

Dτ,rk+1 for any τ = 13 . . . (p− 1)2p where p ≥ 4. In partiular, this formula was needed for the study

of olumn strit �llings of retangular shapes initiated by Harmse and the seond author [11℄. That is,

Harmse and the seond author [11℄ de�ned Fn,k to be the set of all �llings of a k×n retangular array

with the integers 1, . . . , kn suh that that the elements inrease from bottom to top in eah olumn.

We let (i, j) denote the ell in the ith row from the bottom and the jth olumn from the left of the

k × n retangle and we let F (i, j) denote the element in ell (i, j) of F ∈ Fn,k.

Given a partition λ = (λ1, . . . , λk) where 0 < λ1 ≤ · · · ≤ λk, we let Fλ denote the Ferrers diagram

of λ, i.e. Fλ is the set of left-justi�ed rows of squares where the size of the i-th row is λi. Thus a

k×n retangular array orresponds to the Ferrers diagram orresponding to (nk). If F ∈ Fn,k and the

integers are inreasing in eah row, reading from left to right, then F is a standard tableau of shape

(nk). We let Stnk denote the set of all standard tableaux of shape (nk) and let stnk = |Stnk |. One an
use the Frame-Robinson-Thrall hook formula [8℄ to show that

stnk =
(kn)!

∏k−1
i=0 (i+ n) ↓n

(20)

where (n) ↓0= 1 and (n) ↓k= n(n− 1) · · · (n− k + 1) for k > 0.

If F is any �lling of a (k × n)-retangle with distint positive integers suh that elements in eah

olumn inrease, reading from bottom to top, then we let red(F ) denote the element of Fn,k whih

results from F by replaing the ith smallest element of F by i. For example, Figure 7 demonstrates a

�lling, F , with its orresponding redued �lling, red(F ).

8

6

15

10
red(F)

5

3

9

6
F

11

8

17

13

12 16 22 7 10 12

1 7 5 1 4 2

Figure 7: An example of F ∈ F3,4 and red(F ).

If F ∈ Fn,k and 1 ≤ c1 < · · · < cj ≤ n, then we let F [c1, . . . , cj ] be the �lling of the (k×j)-retangle
where the elements in olumn a of F [c1, . . . , cj ] equal the elements in olumn ca in F for a = 1, . . . , j.
Let P be an element of Fj,k and F ∈ Fn,k where j ≤ n. Then we say there is a P -math in F starting

at position i if red(F [i, i + 1, . . . , i + j − 1]) = P . We let P -mch(F ) denote the number of P -mathes

in F .

If P ∈ F2,s, then we de�ne MPP,n to be the set of F ∈ Fn,s suh that P -mch(F ) = n − 1, i.e.
the set of F ∈ Fn,s suh that there is a P -math in F starting at positions 1, 2, . . . , n − 1. Elements

of MPP,n are alled maximum pakings for P . We let mpP,n = |MPP,n| and use the onvention that

mpP,1 = 1. For example, if P is the element of F2,k that has the integers 1, . . . , s in the �rst olumn

and the integers s+1, . . . , 2s in the seond olumn, then it follows that mpP,n = 1 for all n ≥ 1, sine
the only element of F ∈ Fn,k with P -mch(F ) = n− 1 has the integers (i− 1)s + 1, . . . , (i− 1)s+ s in
the i-th olumn, for i = 1, . . . , n. Harmse and the seond author [11℄ proved that the omputation of

the generating funtion for the number of P -mathes in Fn,k an be redued to omputing mpP,n for
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all n so that they omputed mpP,n for various P ∈ F2,k. In partiular, let Ps ∈ St2s be the standard

tableau whih has 1, 3, 4, . . . , s+ 1 in the �rst olumn and 2, s+ 2, s+ 3, . . . , 2s in the seond olumn.

For example, P5 is pitured in Figure 8.

1 2

3

4

5

6

7

8

9

10

Figure 8: The standard tableau P5.

Then Harmse proved that for s, n ≥ 2,

mpPs,n =
1

(s− 1)(n − 1) + 1

(
s(n− 1)

n− 1

)

(21)

We laim that we an use (21) to obtain our desired formula for Dτ,rk+1. That is, suppose that

s, n ≥ 2 and F ∈ MPPs,n. Then in F , the top s − 1 elements of olumn i where i > 1 are larger

than any of the elements in olumn i− 1 and are greater than or equal to F (1, i). It follows that the
top s − 1 elements in olumn n are greater than all the remaining elements in F so that they must

be s(n − 1) + 2, s(n − 1) + 3, . . . , sn reading from bottom to top. Given suh an F , we let σF be the

permutation in Ss(n−1)+2 where

σF = F (1, 1)F (2, 1) . . . F (s, 1) . . . F (1, n − 1)F (2, n − 1) . . . F (s, n− 1)F (1, n)F (2, n).

For example, if F is the element of MPP5,4 pitured at the top of Figure 9, then σF is pitured at the

bottom of Figure 9.

σ    = 
F

1 4 5 6 8 2 9 10 11 12 3 13 14 15 16 7 17

F=

20

19

18

17

1 2 3

4

5

6

7

8

9

11

10

12

13

14

15

16

Figure 9: An example of σF .

Then it follows that if F ∈ MPPs,n, then σF is a permutation in Ss(n−1)+2 whih has 1 3 . . . (s −
1) 2 s-mathes starting at positions 1+ (s− 2)(j − 1) for j = 1, . . . , n− 1. Vie versa, if σ ∈ Ss(n−1)+2

is a permutation whih has 1 3 . . . (s − 1) 2 s-mathes starting at positions 1 + (s − 2)(j − 1) for

j = 1, . . . , n − 1, then we an reate a �lling of Fσ ∈ MPPs,n by letting rth olumn of F onsist of

σs(r−1)+1, . . . , σs(r−1)+s, reading from bottom to top, for r = 1, . . . , n − 1 and letting the nth
olumn

onsist of σs(n−1)+1, σs(n−1)+2, s(n − 1) + 3, . . . , sn, reading from bottom to top. It then follows from
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(21) that the number of permutations σ ∈ S(k−1)(p−1)+2 that have 1 3 . . . (p−1) 2 p-mathes starting at

positions 1+(p−2)(j−1) for j = 1, . . . , k−1 is 1
(p−2)(k−1)+1

((k−1)(p−1)
k−1

)
. Hene if τ = 1 3 . . . (p−1) 2 p,

then

Dτ,rk+1 =
1

(p − 2)(k − 1) + 1

(
(k − 1)(p − 1)

k − 1

)

.

Thus the ontribution to Uτ,n(y) of those �xed points O suh that the briks b1, . . . , bk−1 all have p−2
ells and there is a τ -math starting at ell rj for 1 ≤ j ≤ k − 1, but there is no τ -math starting at

position rk = (k − 1)(p − 2) + 1 is

(−y)k−1 1

(p − 2)(k − 1) + 1

(
(k − 1)(p − 1)

k − 1

)

Uτ,n−((k−1)(p−2)+1)(y).

Hene we have shown that if τ = 13 . . . (p− 1)2p where p ≥ 4, then Uτ,1(y) = −y and for n ≥ 2,

Uτ,n(y) = (1− y)Uτ,n−1(y) +

⌊n−2
p−2

⌋
∑

k=1

(−y)k
1

(p− 2)k + 1

(
k(p− 1)

k

)

Uτ,n−(k(p−2)+1)(y). (22)

This proves Theorem 1.2.

In Tables 8-13 in Appendix 1, we have also omputed the values of the polynomials

U13...(p−1)2p,n(y) and NM13...(p−1)2p,n(x, y) for n ≤ 8 and p = 4, 5, 6.

Again, we explain several of these oe�ients. For example, the same argument that we used to

prove that NM1p2...,(p−1),n(x, y)|xkyk = S(n, k) will prove that

NM13...,(p−1)2p,n(x, y)|xkyk = S(n, k).

We laim that for p ≥ 4,

NM13...(p−1)2p,n(x, y)|xy2 =

{

2n−1 − n if n < p and

2n−1 − 2n+ p− 1 if n ≥ p.
(23)

That is, suppose that σ ∈ Sn ontributes to NM13...(p−1)2p,n(x, y)|xy2 . Then σ must have 1 left-to-right

minima and one desent. It follows that σ must start with 1 and have one desent. We have shown

that there are 2n−1−n permutations that start with 1 and have 1 desent. Next onsider when suh a

σ whih starts with 1 and has 1 desent an have a 13 . . . (p−1)2p-math. If the 13 . . . (p−1)2p-math

starts at position i, then it must be the ase that σi+p−3 > σi+p−2. Thus it follows that σ1, . . . , σi+p−3

and σi+p−2, . . . , σn are inreasing sequenes. But the fat that there is a 13 . . . (p−1)2p-math starting

at position i also implies that σi < σi+p−2. It follows that 1, . . . , σi − 1 must proeed σi whih implies

that σi = i. But sine σi+p−1 is greater than σi+1, . . . , σi+p−3, it follows that σi+p−2 = i+ 1 and

σi+1 = i+ 2, , σi+3 = i+ 3, . . . , σi+p−3 = i+ p− 2.

Thus there is only one suh σ whih has 13 . . . (p − 1)2p-math starting at position i. As i an vary

from 1 to n− p+ 1, it follows that there are n− p+ 1 permutations σ whih starts with 1 and have 1

desent and ontain a 13 . . . (p− 1)2p-math. Hene (23) holds.
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4 Conlusions and some problems for further researh.

We have proved that the polynomials U1p23...(p−1),n(y) and U134...(p−1)2p,n(y) satisfy simple reur-

sions and that these reursions allow us to ompute the initial terms in the generating funtions

NM1p23...(p−1)(t, x, y) and NM134...(p−1)2p(t, x, y) for p ≥ 4.

It is easy to see that the polynomials U1p23...(p−1),n(−y) and U134...(p−1)2p,n(−y) are polynomials

with non-negative integer oe�ients. We have omputed extensive tables of these polynomials and all

the polynomials that we have omputed are log-onave. Here a polynomial P (y) = a0+a1y+· · ·+any
n

is alled log-onave if for all i = 2 . . . n− 1, ai−1ai+1 < a2i and it is alled unimodal if there exists an

index k suh that ai ≤ ai+1 for i = 1 . . . k − 1 and ai ≥ ai+1 for i = k . . . n − 1. Thus for any p ≥ 4,
we onjeture that the polynomials U1p23...(p−1),n(−y) and U134...(p−1)2p,n(−y) are log-onave.

We have omputed Un,τ (−y) for many permutations that start with 1. Out of all the patterns τ
that start with 1 and have exatly one desent that we have looked at, all of the polynomials Uτ,n(−y)
seem to be unimodal but not neessarily log-onave. For instane, the authors in [12℄ showed if

τ = 1342 then

U1342,n(y) = (1− y)U1342,n−1(y)− y

(
n− 2

2

)

U1342,n−3(y)

and the oe�ients of yi in U1342,n(−y) are given in Table 1.

Table 1: Coe�ients of U1342,n(−y)

Coe�ients of yi in U1342,n(−y)

i=1 2 3 4 5 6 7 8 9 10

n=1 1

2 1 1

3 1 2 1

4 1 4 3 1

5 1 8 10 4 1

6 1 15 30 20 5 1

7 1 26 85 80 35 6 1

8 1 42 231 315 175 56 7 1

9 1 64 588 1176 910 336 84 8 1

10 1 93 1380 4144 4326 2226 588 120 9 1

Notie that in row 8 and olumns 6, 7, 8, (56)(1) > 72. Hene, there are polynomials U1342,n(−y)
that are not log-onave. Thus it would be interesting to see whether our reursions an be used to

prove that the polynomials U1p23...(p−1),n(−y) and U134...(p−1)2p,n(−y) are log-onave.

If we set y = 1, then our results show that the U1p2...(p−1),n(1) and the U13...(p−1)2p,n(1) satisfy simple

reursions. Nevertheless, it seems that the sequenes (U1p2...(p−1),n(1))n≥1 and (U13...(p−1)2p,n(1))n≥1

are quite ompliated. In fat, these sequenes are not even monotone when we take absolute values.

For example, the initial 27 terms of the sequene (U15234,n(1))n≥1 are

−1, 0, 0, 0, 1, 0, 0,−1,−5, 0, 1, 23, 45,−1,−82,−501,−584, 270, 3849, 12110, 9081,−25547,

−161741,−328989,−50941, 1784059, 6821610, . . .
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and the initial 27 terms of the sequene (U1324,n(1))n≥1 are

−1, 0, 0, 1, 0,−3,−1, 12, 6,−54,−33, 264, 181,−1365,−1008, 7345, 5712,−40713,−32890,

230886, 192045,−1333309,−1134912, 7813629, 6776639,−46351500,−40827423, . . . .

A more general problem is to extend our method to the ase of permutations that start with 1 but

have more that one desent. The problem in this ase is that the map Iτ is not an involution. That

is, it is possible that when we split a brik b into two briks b′ and b′′ at ell c labeled y, then it may

be the ase that b′ an be ombined with the brik b− just before b beause there is a desent between
those briks and there is no τ -math in the ells of b− and b′ while there was a τ -math in the ells of

b− and b so that we annot ombine b− and b. Thus we an not use suh a ell c to de�ne an involution

beause we want the ases to be reversible. This means that we an not use suh a ell c to de�ne

an involution so that we have to restrit ourselves to those ells c whih are labeled with y where it

is not possible to ombine b− and b′. This makes the de�nition of our involution more ompliated

and hene it is more di�ult to analyze the �xed points of suh involutions. Nevertheless, there is at

least one speial ase where we an still arry out the analysis. Namely, the �rst author has shown

U15243,1(y) = −y and for n ≥ 2,

U15243,n(y) = (1− y)U15243,n−1(y) +

⌊n−1
2

⌋
∑

k=2

y(−y)k−1

(
n− k − 1

k

)

U15243,n−2k(y).
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Appendix: The polynomials U1p23...(p−1),n(y), NM1p23...(p−1),n(x, y), U13...(p−1)2p,n(y), and
NM13...(p−1)2p,n(x, y).

Table 2: Coe�ients of yi in U1423,n(y)

i = 1 2 3 4 5 6 7 8 9 10

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 4 −3 1

5 −1 7 −9 4 −1

6 −1 11 −23 16 −5 1

7 −1 16 −53 54 −25 6 −1

8 −1 22 −110 165 −105 36 −7 1

Table 3: The polynomials NM1423,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 3x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 8x y2 + 15x2 y2 + 9x y3 + 25x2 y3 + 25x3 y3 + x y4+
5x2 y4 + 10x3 y4 + 10x4 y4 + x5 y5

6 x y + 20x y2 + 31x2 y2 + 46x y3 + 113x2 y3 + 90x3 y3 + 23x y4 + 79x2 y4+
105x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 47x y2 + 63x2 y2 + 200x y3 + 448x2 y3 + 301x3 y3 + 219x y4 + 651x2 y4+
728x3 y4 + 350x4 y4 + 53x y5 + 217x2 y5 + 364x3 y5 + 315x4 y5 + 140x5 y5+
x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 105x y2 + 127x2 y2 + 794x y3 + 1650x2 y3 + 966x3 y3 + 1547x y4+
4225x2 y4 + 4214x3 y4 + 1701x4 y4 + 919x y5 + 3166x2 y5 + 4410x3 y5+
3108x4 y5 + 1050x5 y5 + 115x y6 + 543x2 y6 + 1092x3 y6 + 1204x4 y6+
770x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8
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Table 4: Coe�ients of yi in U15234,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 5 −6 4 −1

6 −1 8 −13 10 −5 1

7 −1 12 −27 26 −15 6 −1

8 −1 17 −52 65 −45 21 −7 1

Table 5: The polynomials NM15234,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 10x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 23x y2 + 31x2 y2 + 63x y3 + 140x2 y3 + 90x3 y3 + 26x y4 + 91x2 y4+
120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 51x y2 + 63x2 y2 + 272x y3 + 546x2 y3 + 301x3 y3 + 296x y4+
847x2 y4 + 875x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5 + 350x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 110x y2 + 127x2 y2 + 1034x y3 + 1948x2 y3 + 966x3 y3 + 2258x y4+
5746x2 y4 + 5124x3 y4 + 1701x4 y4 + 1181x y5 + 4048x2 y5 + 5502x3 y5+
3640x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6 + 1316x4 y6+
840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8

Table 6: Coe�ients of yi in U162345,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 4 −6 4 −1

6 −1 6 −10 10 −5 1

7 −1 9 −18 20 −15 6 −1

8 −1 13 −33 41 −35 21 −7 1



A RECIPROCITY METHOD FOR CONSECUTIVE PATTERN AVOIDANCE 175

Table 7: The polynomials NM162345,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 11x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 25x y2 + 31x2 y2 + 66x y3 + 146x2 y3 + 90x3 y3 + 26x y4+
91x2 y4 + 120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5+
15x5 y5 + x6 y6

7 x y + 54x y2 + 63x2 y2 + 298x y3 + 581x2 y3 + 301x3 y3 + 302x y4+
868x2 y4 + 896x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5+
350x4 y5 + 140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6+
21x6 y6 + x7 y7

8 x y + 114x y2 + 127x2 y2 + 1151x y3 + 2084x2 y3 + 966x3 y3+
2406x y4 + 6094x2 y4 + 5348x3 y4 + 1701x4 y4 + 1191x y5 + 4096x2 y5+
5586x3 y5 + 3696x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6+
1316x4 y6 + 840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7+
70x5 y7 + 56x6 y7 + 28x7 y7 + x8 y8

Table 8: Coe�ients of yi in U1324,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 4 −3 1

5 −1 6 −8 4 −1

6 −1 8 −19 13 −5 1

7 −1 10 −34 38 −19 6 −1

8 −1 12 −53 98 −64 26 −7 1
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Table 9: The polynomials NM1324,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 3x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 9x y2 + 15x2 y2 + 8x y3 + 25x2 y3 + 25x3 y3 + x y4 + 5x2 y4 + 10x3 y4+
10x4 y4 + x5 y5

6 x y + 23x y2 + 31x2 y2 + 48x y3 + 119x2 y3 + 90x3 y3 + 20x y4 + 73x2 y4+
105x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 53x y2 + 63x2 y2 + 223x y3 + 490x2 y3 + 301x3 y3 + 207x y4+
644x2 y4 + 749x3 y4 + 350x4 y4 + 47x y5 + 196x2 y5 + 343x3 y5 + 315x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 115x y2 + 127x2 y2 + 925x y3 + 1838x2 y3 + 966x3 y3 + 1602x y4+
4465x2 y4 + 4466x3 y4 + 1701x4 y4 + 810x y5 + 2930x2 y5 + 4298x3 y5+
3164x4 y5 + 1050x5 y5 + 105x y6 + 495x2 y6 + 1008x3 y6 + 1148x4 y6+
770x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8

Table 10: Coe�ients of yi in U13425,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 5 −6 4 −1

6 −1 7 −12 10 −5 1

7 −1 9 −21 23 −15 6 −1

8 −1 11 −37 47 −39 21 −7 1
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Table 11: The polynomials NM13425,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 10x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 24x y2 + 31x2 y2 + 62x y3 + 140x2 y3 + 90x3 y3 + 26x y4 + 91x2 y4+
120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 54x y2 + 63x2 y2 + 273x y3 + 553x2 y3 + 301x3 y3 + 292x y4+
840x2 y4 + 875x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5 + 350x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 116x y2 + 127x2 y2 + 1071x y3 + 2000x2 y3 + 966x3 y3 + 2228x y4+
5726x2 y4 + 5152x3 y4 + 1701x4 y4 + 1171x y5 + 4016x2 y5 + 5474x3 y5+
3640x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6 + 1316x4 y6+
840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8

Table 12: Coe�ients of yi in U134526,n(y)

i = 1 2 3 4 5 6 7 8 9 10 11

n = 1 −1

2 −1 1

3 −1 2 −1

4 −1 3 −3 1

5 −1 4 −6 4 −1

6 −1 6 −10 10 −5 1

7 −1 8 −17 20 −15 6 −1

8 −1 10 −27 38 −35 21 −7 1
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Table 13: The polynomials NM134526,n(x, y)

n = 1 x y

2 x y + x2 y2

3 x y + x y2 + 3x2 y2 + x3 y3

4 x y + 4x y2 + 7x2 y2 + x y3 + 4x2 y3 + 6x3 y3 + x4 y4

5 x y + 11x y2 + 15x2 y2 + 11x y3 + 30x2 y3 + 25x3 y3 + x y4 + 5x2 y4+
10x3 y4 + 10x4 y4 + x5 y5

6 x y + 25x y2 + 31x2 y2 + 66x y3 + 146x2 y3 + 90x3 y3 + 26x y4 + 91x2 y4+
120x3 y4 + 65x4 y4 + x y5 + 6x2 y5 + 15x3 y5 + 20x4 y5 + 15x5 y5 + x6 y6

7 x y + 55x y2 + 63x2 y2 + 297x y3 + 581x2 y3 + 301x3 y3 + 302x y4+
868x2 y4 + 896x3 y4 + 350x4 y4 + 57x y5 + 238x2 y5 + 406x3 y5 + 350x4 y5+
140x5 y5 + x y6 + 7x2 y6 + 21x3 y6 + 35x4 y6 + 35x5 y6 + 21x6 y6 + x7 y7

8 x y + 117x y2 + 127x2 y2 + 1153x y3 + 2092x2 y3 + 966x3 y3 + 2401x y4+
6086x2 y4 + 5348x3 y4 + 1701x4 y4 + 1191x y5 + 4096x2 y5 + 5586x3 y5+
3696x4 y5 + 1050x5 y5 + 120x y6 + 575x2 y6 + 1176x3 y6 + 1316x4 y6+
840x5 y6 + 266x6 y6 + x y7 + 8x2 y7 + 28x3 y7 + 56x4 y7 + 70x5 y7+
56x6 y7 + 28x7 y7 + x8 y8


